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Abstract

A strongly regular graph with parameters (v, k, λ, µ) is a regular

graph on v vertices with valency k, such that two neighbors have λ

common neighbors and two non-neighbors have µ common neighbors.

An equitable partition of a graph is a partition of the vertex set

such that the number of neighbors a vertex from cell X has in cell Y

depends only on the selection of the cells, not the selection of vertex.

A coherent algebra of order n is a subalgebra of Mn(C) that

contains the matrices In and Jn (the all ones matrix), and is closed

under transposition and Schur-Hadamard (entrywise) product. Such

an algebra has a (unique) basis of (0, 1) matrices whose sum is Jn.

An association scheme over a set X is a partition of the cartesian

product X × X, such that the adjacency matrices of the relations

in the partition form a basis of a homogeneous coherent algebra.

The set of 2-orbits (orbitals) of a transitive permutation group is

an association scheme. An association scheme which is the set of 2-

orbits of a transitive permutation group is called Schurian, otherwise

it is called non-Schurian.

A Schur ring (S-ring) over a group H is a subring of the group

ring Z[H] which has a special basis. For our purpose, S-rings over

H may be identified with association schemes whose automorphism

group contains a regular subgroup isomorphic to H.

A graph is called semisymmetric if its automorphism group is

transitive in its action on the edges of the graph, but intransitive in

its action on the vertices of the graph. Such a graph is bipartite.

There are seven primitive known triangle-free strongly regular

graphs (that is, connected strongly regular graphs with λ = 0, having

also a connected complement). Using a computer, for each pair of

graphs, we enumerated the number of embeddings of the small graph



into the larger graph. For the four smallest graphs, we enumerated

all equitable partitions. For the three larger graphs, we enumerated

all equitable partitions satisfying some symmetry condition. For

a few of those embeddings and equitable partitions, we provide a

theoretical proof or explanation.

All S-rings over groups of orders up to 47 were previously enu-

merated (using a computer). We extend this enumeration to three

groups: A5, AGL1(8) and Z11oZ5 (of orders 60, 56 and 55 respec-

tively). The results for Z11oZ5 are preliminary. Our results for A5

confirm the theoretical classification of primitive S-rings over A5. We

provide theoretical explanation for the S-rings over A5 and AGL1(8).

Using an association scheme of order 56 and rank 20 and in-

cidence double covers of graphs, we present new links between two

well-known semisymmetric graphs on 112 vertices. One of the graphs

is the cubic Ljubljana graph, and the other is the Nikolaev graph of

valency 15.

Two interesting new non-Schurian association schemes are pre-

sented and discussed. One has rank 4 and order 125, and is related

to the generalized quadrangle GQ(4, 6). It may be a member of a

series of non-Schurian primitive association schemes on p3 points.

The other association scheme is of rank 6 and order 90. This scheme

is related to the (7, 6)-cage and to Baker’s semiplane on 45 points.

Together with the (6, 5)-cage on 40 vertices, the (7, 6)-cage is one of

the two known non-Schurian coherent cages which do not appear as

the incidence graph of a generalized quadrangle.

A well-known stabilization algorithm with polynomial time com-

plexity (due to Weisfeiler and Leman) computes the coherent closure

of a simple graph. We generalize this algorithm to an arbitrary col-

ored directed graph Γ. A comparison of the output of the classical

and of the new version of the WL-stabilization resulted in the discov-

ery of new pseudo S-rings (with quite unusual properties) on p(p−1)
2

points, for p ∈ {7, 11, 19}.

Keywords: coherent configurations, association schemes, strongly regular

graphs, Schur rings, semisymmetric graphs, computer algebra.



Chapter 1

Introduction

1.1 Motivation

The name Algebraic Graph Theory (AGT) is usually applied to the sys-

tematic investigation of graphs and related combinatorial structures that

have high symmetry. Here, symmetry may be measured in different terms,

depending on group-theoretical, spectral or combinatorial techniques.

A main tool of AGT is coherent configurations (in combinatorial incar-

nation) or coherent algebras (in algebraic incarnation). We use the language

of coherent configurations to study triangle-free strongly regular graphs, S-

rings, semisymmetric graphs and cages.

This area of mathematics used to be known as algebraic combinatorics

(AC), but in recent years, AC was expanded to cover more research ar-

eas (such as polytopes, ordered sets, etc.), and what was originally called

algebraic combinatorics was renamed algebraic graph theory.

In [51] and [87] we studied the (6, 5)-cage, also known as Robertson

graph, on 40 vertices. This graph may be considered the seed of this thesis.

Coherent cages, triangle-free strongly regular graphs and Schur rings are

three subjects that immediately come to mind upon studying this graph.

When performing a computer experiment in AGT, we anticipate one of

two results. Either we find a new example of a combinatorial object with a

given set of properties, or we achieve a complete enumeration of all objects

1



2 CHAPTER 1. INTRODUCTION

with those properties. From here, we perform a posteriori theoretical rea-

soning in an effort to obtain descriptions of greater clarity and simplicity.

We distinguish among three such levels of description as follows.

Suppose we obtain a computer-generated description of, for example,

an incidence structure S = (P,B). By explanation of S, we mean a lu-

cid, computer-free description of P , B, and the incidence between them.

Essential use of a computer, or of additional manual calculations, are not

required in this situation.

By interpretation of S, we mean that in addition to an explanation,

we have a self-contained proof that S indeed has its purported structure

or properties. Ideally, an interpretation should be reasonably short and

methodologically clear.

Finally, we may be able to generalize S into an infinite (or a finite) series

of similar objects, with some of the initial numerical properties parametrized.

1.1.1 Repeatability of results

The results of a computer program are not to be fully trusted. There might

be a problem in the algorithm, a problem in the implementation of the

algorithm, or a (permanent or transient) problem in the system used to run

the implementation. For this reason, we prefer to repeat experiments.

The best case is using two different algorithms on two different systems.

An example for this is the results on embeddings of tfSRGs in tfSRGs, which

were calculated both in GAP and using an independent C program. An-

other example is computing merging association schemes using both COCO

and COCO-II (when a problem fits within the limitations of both packages).

The second best case is running two different implementations of the

same algorithm on different systems. An example of this is the computation

of S-rings over A5 and AGL1(8), where both COCO-II and an independent

implementation of COCO-II’s algorithm, using a combination of GAP and

C program, were used.

At the lowest level of confidence, we run the same implementation of an

algorithm twice, to make sure that the result is not an artifact generated
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by some transient hardware error.

In addition to repeating the results, we also increase the confidence level

for the results by running various smaller tests, or comparing the results

with partial theoretical results. For example, the primitive S-rings over

A5 were already classified, so we compared our list of S-rings with those

results, and made sure our list is not missing any primitive S-rings, nor

does it contain any superfluous one.

1.2 Outline of the thesis

1.2.1 Preliminaries

This thesis starts with a chapter dedicated to preliminaries. In this chapter,

we recall the mathematical terms used in the thesis, and cover definitions,

basic properties, and summary of the current knowledge relevant to the

results presented in the following chapters.

We begin with the definition of coherent configurations and association

schemes (see [7], [20]), and their algebraic counterparts, coherent algebras.

We discuss their three automorphism types and the relations among them.

We also define the important concepts of mergings and coherent closures,

and mention the Weisfeiler-Leman algorithm for calculation of coherent

closure.

We then discuss strongly regular graphs ([38]), with special attention to

those without triangles, that is, triangle-free strongly regular graphs (tfS-

RGs) ([62]). We describe the seven known (primitive) triangle-free strongly

regular graphs, mentioning some of their algebraic and combinatorial prop-

erties.

We define equitable partitions of graphs, which are partitions of the

vertex set of a graph that have a numerical “agreement” with the graph.

The adjacency matrix of such a partition is related to the adjacency matrix

of the graph. This makes equitable partitions a useful tool in algebraic

graph theory.
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Unlike the seven tfSRGs, which are highly symmetric, larger tfSRGs

(such as a tfSRG on 162 vertices, the smallest open case, or the Moore graph

of valency 57), if they exist, are known to have small automorphism groups

([58], [2]). Embeddings of small graphs into large graphs and equitable

partitions are two tools that can be useful in constructing graphs with small

automorphism groups, or proving their nonexistence. It is thus natural to

study embeddings and equitable partitions in the context of the known

tfSRGs, in order to employ the findings in the search for new tfSRGs.

Next, we recall the definition of Schur rings ([74, 82]) and their con-

nection to association schemes. We briefly review the current status of the

efforts to classify all Schur rings (S-rings) over finite groups.

Finally, we present two families of graphs: semisymmetric graphs ([31,

39]) and cages ([78]). Again we provide the definitions and initial theory

of those families of graphs as they relate to our studies. We present details

about two semisymmetric graphs on 112 vertices: Ljubljana and Nikolaev

graphs.

We conclude the preliminaries with a discussion of the computer tools

used in the study. These include the computer algebra system GAP, the

package COCO for computations with coherent configurations, and some

programs written specifically for our computational tasks.

1.2.2 Summary of results

In Chapter 3, we present the results of our computations relating to tfSRGs.

The first result concerns embeddings of tfSRGs into primitive tfSRGs.

We completely enumerated all such embeddings. For each pair of graphs,

we counted the number of embeddings of the smaller into the larger, and

partitioned all those embeddings into orbits of the automorphism group of

the larger graph. We note that in all but two cases, all embeddings are in the

same orbit. The two exceptions are embeddings of Petersen graphs inside a

Mesner graph and inside a Higman-Sims graph (henceforward called by its

older, but lesser known name, NL2(10)). For each orbit of embeddings, we

also calculated the stabilizer of the embedding in the automorphism group
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of the larger graph.

We generalized some of the computerized results to theorems, which

were proved without a computer. A formula for the number of pentagons

inside of a tfSRG can be derived from its parameters by combinatorial ar-

guments. The two cases of embeddings, of a Petersen graph into a Clebsch

graph and of a Mesner graph inside NL2(10), are special cases of the gen-

eral theory of negative Latin square graphs. Mesner proved that for each

vertex v of a negative Latin square graph, the induced subgraph on all non-

neighbors of v is a strongly regular graph, thus giving a lower bound for

the number of such embeddings. We prove that each embedding of a graph

with suitable parameters into a negative Latin square graph is of this type,

thus the lower bound is the actual number of embeddings.

We also enumerated equitable partitions of the known tfSRGs. For

the four smaller graphs, we enumerated all equitable partitions. For the

Sims-Gewirtz graph, we enumerated all non-rigid equitable partitions, and

for the two larger graphs, Mesner graph and NL2(10), we enumerated all

automorphic equitable partitions.

Up to action of the automorphism group, it is easy to manually enu-

merate the 3 EPs of the pentagon and 11 EPs of the Petersen graph, all of

which are automorphic.

A brute force search by a computer reveals that the Clebsch graph ad-

mits 46 equitable partitions, 38 of which are automorphic.

For the Hoffman-Singleton graph on 50 vertices, a brute force search is

out of the question, but “cooperation” between a human and a machine

allows us to divide the search space into small enough pieces that can be

efficiently processed by a computer. This combined effort reveals all 163

EPs of the Hoffman-Singleton graph, 89 of which are automorphic.

For the Sims-Gewirtz graph, we settled for enumerating non-rigid parti-

tions (i.e. those that are stabilized by a non-identity automorphism of the

graph). There are 754 such EPs, and together with the partition with all

cells of size 1, we have 755 partitions of this graph, though we do not know

if they are all EPs of the Sims-Gewirtz graph.

While for the Sims-Gewirtz graph we only enumerated all non-rigid EPs,
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for the four smaller graphs, we enumerated all EPs, and all of them were

non-rigid (except for the trivial partition into cells of size 1). Thus, we do

not yet have an example of a non-trivial rigid equitable partition of any

tfSRG.

For the two larger graphs, we enumerated automorphic equitable parti-

tions. There are 236 automorphic EPs of the Mesner graph and 607 such

EPs of NL2(10).

Most of the results that appear in Chapter 3 were published in [88]. In

addition, the information that appears in Section 3.3.1 was published in

Section 6 of [52].

Using a computer, we enumerated all S-rings over A5. Up to action

of Aut(A5) = S5, there are 163 S-rings of ranks 60, 33, 32, 22 and any

rank between 2 and 20. Of those S-rings, 19 are non-Schurian, with ranks

ranging from 4 to 14.

A Schurian S-ring is defined by its group, so we identify the automor-

phism groups of those S-rings. For the 24 small groups (of order up to 7680),

we provide the structure of the groups. For the 14 large groups of orders

14400 to 933120, calculation of the structure is both more time-consuming

and less useful.

Of the remaining 106 very large groups, of orders more than 106, 77

may be explained as wreath products of smaller groups. This leaves 29

large groups that require another explanation.

For the 19 non-Schurian S-rings, a more sophisticated approach is needed.

We discover that each of the 19 S-rings is a merging of at least one of 4

Schurian S-rings with automorphism groups of orders 720, 1320, 1920, and

7680 (Root S-rings).

We enumerated all S-rings over AGL1(8) as well. There exist 129 S-rings

(up to action of Aut(AGL1(8)) = AΓL1(8) of order 168) of ranks 56, 32, 22,

20 and any rank from 18 to 2. Of those S-rings, 20 are non-Schurian.

In a similar manner to the S-rings over A5, we describe the structure

of 24 small groups of orders up to 3584, and of 56 out of the 63 very large

groups which are wreath products.

For the non-Abelian group of order 55, we enumerate the symmetric
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S-rings, of which there are 13 up to the action of the automorphism group.

All of those S-rings are Schurian. We also present preliminary results of

enumeration of all S-rings over Z11oZ5.

The results that appear in Chapter 4 were published in [53].

We present related coherent configurations on 56 and 112 vertices, which

give interesting links between the Ljubljana graph, a cubic semisymmetric

graph on 112 vertices, and the Nikolaev graph, a semisymmetric graph of

valency 15 on 112 vertices. Among the relations, we note that the Ljubljana

graph is a subgraph of the Nikolaev graph.

We calculate the coherent closure of the (7, 6)-cage on 90 vertices, dis-

covering that it is a rank 6 non-Schurian association scheme. Furthermore,

the cage is one of the basic graphs of its closure, so it is a coherent graph.

The results that appear in Section 5.1 were published in [50].

Finally, in Chapter 6 we discuss avenues for future research based on

the results presented in this thesis.

The existence of a new primitive tfSRG is one of the most daunting

and difficult problems in modern algebraic graph theory. One possible way

to attack this problem systematically for a prescribed set of parameters

(for example, the smallest open case on 162 vertices) is to predict possible

equitable partitions, such as those with a small number of cells, and to try

to prove or disprove the existence of some of these partitions. Patterns

discovered in equitable partitions of known tfSRGs may be generalized and

used for consideration of tfSRGs with new parameter sets.

Enumeration of S-rings over A5 may be used as a stencil for classifi-

cation of S-rings over alternating groups, which is a necessary part of the

classification of all S-rings.

The concept of a coherent cage was introduced quite recently, aiming to

characterize among the known cages those that have a high combinatorial

symmetry, resembling the symmetry of Moore graphs and the incidence

graphs of generalized quadrangles.

While working on this thesis, some modification to the available com-

puter tools was required. The program stabil is an implementation of

the Weisfeiler-Leman algorithm that stabilizes a symmetric matrix into a
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color matrix of a coherent algebra. We modified it to stabilize an arbitrary

matrix by adding an initial symmetrizing step. We include a proof that

the modified algorithm works for arbitrary matrices. The same generalized

algorithm is also implemented in COCO-II.



Chapter 2

Preliminaries

2.1 Coherent configurations and association

schemes

A color graph is a pair (Ω,R), where R = {Ri|i ∈ I} is a partition of the

set Ω2. We are mainly interested in a special class of color graphs with

further properties.

2.1.1 Axioms and basic definitions

Let (X,R = {R1, . . . , Rr}) be a color graph such that:

CC1 Ri ∩Rj = ∅ for 1 ≤ i 6= j ≤ r;

CC2
r⋃
i=1

Ri = X2;

CC3 ∀i ∈ [1, r]∃i′ ∈ [1, r]R′i = Ri′ , where R′i = {(y, x)|(x, y) ∈ Ri};

CC4 ∃I ′ ⊆ [1, r]
⋃
i∈I′

Ri = ∆, where ∆ = {(x, x)|x ∈ X};

CC5 ∀i, j, k ∈ [1, r]∀(x, y) ∈ Rk|{z ∈ X|(x, z) ∈ Ri ∧ (z, y) ∈ Rj}| = pkij,

then M = (X,R) is called a coherent configuration. The relations in R
are called basic relations of M. If R = {R0, . . . , Rr} are the basic relations

9
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of a coherent configuration M, then the graphs Γi = (X,Ri) are called

basic graphs of M, and their adjacency matrices Ai = A(Γi) are called basic

matrices of M.

The partition of ∆ which exists by axiom CC4 induces a partition of

X. Each member of this partition is called a fiber of M. Any relation of a

coherent configuration is a subset of a Cartesian product of two fibers (not

necessarily distinct).

The parameters pkij are the intersection numbers of the configuration.

See [81] and [40] for original definitions.

The order of a coherent configuration M = (X,R) is |X| and the rank

of M is |R|.
A coherent configuration that has ∆ = {(x, x)|x ∈ X} as one of its basic

relations is called homogeneous, or an association scheme. If M = (X,R) is

a rank r+1 association scheme, we will usually denote the reflexive relation,

∆, by R0. The non-reflexive relations are called classes of M.

An association scheme is primitive if all basic graphs corresponding to

its classes are connected. Otherwise it is imprimitive.

An association scheme is symmetric if all basic relations are symmet-

ric (equivalently, all basic graphs are undirected, or all basic matrices are

symmetric). If all relations of a coherent configuration are symmetric, this

configuration must be an association scheme.

Let (G,Ω) be a permutation group. g ∈ G acts naturally on Ω2 by the

rule (x, y)g = (xg, yg). Following H. Wielandt in [82], the orbits of this

action, (G,Ω2), are called the 2-orbits of (G,Ω), denoted by 2− orb(G,Ω).

For every permutation group (G,Ω), (Ω, 2 − orb(G,Ω)) is a coherent

configuration. A coherent configuration obtained in this way is called a

Schurian coherent configuration. If G is transitive, then (Ω, 2− orb(G,Ω))

is an association scheme.

Coherent configurations may be alternatively defined in the language

of matrices. The adjacency matrix A(R) of a relation R on X is a (0,1)-

matrix A(R) = (aij) of dimension |X| × |X| such that aij = 1 if and only if

(i, j) ∈ R.
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If (X, {R1, R2, . . . Rr}) is a coherent configuration, and we look at the

set of matrices B = {A1 = A(R1), . . . , Ar = A(Rr)}, then axioms CC1 and

CC2 say that
∑
Ai = J|X| (where J|X| is the all one matrix of dimension

|X| × |X|). Axiom CC3 says that for each A ∈ B, At ∈ B. Axiom CC5

says that any product of two matrices from B is a linear combination of

matrices in B, or in other words, the matrix algebra generated by B is the

same as the vector space generated by B. Axiom CC4 says that the identity

matrix, I|X|, is in this algebra. This leads to the axiomatic definition of a

coherent algebra (which is equivalent to coherent configuration) [41]:

Let W ⊆Mn(C) be a matrix algebra such that

CA1 W as a linear space over C has some basis, A1, A2, . . . , Ar, consisting

of (0, 1)-matrices;

CA2
r∑
i=1

Ai = Jn.

CA3 ∀i ∈ [1, r]∃i′ ∈ [1, r]Ati = Ai′ ;

CA4 In ∈ W .

Then W is called a coherent algebra of rank r and order n with the standard

basis B = {A1, A2, . . . , Ar}. We write W = 〈A1, · · · , Ar〉.
Each matrix of the standard basis is an idempotent under Schur-Hadamard

product (entrywise product), so the algebra is closed under this operation.

This allows an alternative definition of a coherent algebra. A matrix al-

gebra W ⊆Mn(C) is coherent if it is closed under Schur-Hadamard product

and includes the matrices In and Jn.

For a coherent algebra W = 〈A1, · · · , Ar〉, we define the color matrix of

W to be
∑r

k=1 kAk. More generally, any linear combination of A1, . . . , Ar

with distinct coefficients may also be considered a color matrix of W .

A coherent algebra is called commutative if it is commutative as a matrix

algebra, and symmetric if all its matrices are symmetric. A coherent algebra

is symmetric if and only if all matrices in standard basis are symmetric, so

the corresponding coherent configuration is homogeneous and symmetric.
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A symmetric coherent algebra is commutative, but the converse is not

necessarily true.

A coherent algebra is homogeneous if its standard basis includes the

identity matrix In. A homogeneous coherent algebra corresponds to an

association scheme.

We will usually switch freely between relation (or graph) language and

matrix language. In particular, the intersection numbers of a coherent con-

figuration are also called structure constants of the corresponding coherent

algebra.

The smallest non-Schurian association scheme M is of order 15. For this

scheme, CAut(M) = Aut(M), as was first noted in [10]. AAut(M) is of

order 2, twice larger than CAut(M)/Aut(M).

2.1.2 Isomorphism and automorphism types

Let M1 = (X1, {R1, . . . , Rn}) and M2 = (X2, {S1, . . . , Sn}) be two coherent

configurations. An isomorphism from M1 to M2 is a bijection, f : X1 → X2

such that there exists a permutation g of [1, n] such that f maps Ri to Sg(i)

for all 1 ≤ i ≤ n.

This definition of isomorphism gives two kinds of automorphisms:

If M = (X, {∆, R1, . . . , Rn}) is a coherent configuration, then f ∈
Sym(X) is an automorphism (or strong automorphism) of M if Rf

i = Ri

for all i ∈ [1, n].

A permutation f ∈ Sym(X) is a color automorphism (or weak automor-

phism) if Rf
i ∈ {R1, . . . , Rn} for all i ∈ [1, n].

The group of (strong) automorphisms of M is denoted by Aut(M) and

the group of color automorphisms of M is denoted by CAut(M).

Proposition 1. 1. Aut(M) E CAut(M);

2. CAut(M) E NS(X)(Aut(M)),

NS(X)(G) - normalizer of G in S(X);

3. If M is Schurian then CAut(M) = NS(X)(Aut(M)).
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An algebraic isomorphism between two coherent configurations M1 =

(X1, {R1, . . . , Rr}) and M2 = (X2, {S1, . . . , Sr}), which have structure con-

stants 1p
k
ij and 2p

k
ij respectively, is a permutationˆof [1, n] such that 1p

k
ij =

2p
k̂
îĵ

for all i, j, k ∈ [1, n].

The set of algebraic automorphisms of a coherent configuration M is

denoted by AAut(M). Each color automorphism of M induces an algebraic

automorphism:

Proposition 2. CAut(M)/Aut(M) ≤ AAut(M)

An algebraic automorphism that does not arise from a color automor-

phism is called a proper algebraic automorphism ([46]).

2.1.3 Coherent closure

Coherent algebras are defined by closure conditions. Thus, the intersection

of coherent algebras is again a coherent algebra. Each square matrix is

contained in at least one coherent algebra, the whole matrix algebra, Cn×n,

which is coherent. Therefore, we can define the coherent closure of a matrix

A, denoted 〈〈A〉〉, to be the smallest coherent algebra containing this matrix

(or in other words, the intersection of all coherent algebras containing it).

An efficient (polynomial-time) algorithm for computing 〈〈A〉〉 (for an

adjacency matrix of a simple graph) was suggested by Weisfeiler and Leman

([81], [80]), and is frequently called the WL-stabilization of the (symmetric)

matrix A.

1. Start with a matrix A.

2. Replace each entry A in the matrix with an indeterminate xa.

3. Calculate B = A · A. The indeterminates are independent and non-

commuting.

4. If the number of distinct entries in B is larger than in A, then substi-

tute matrix B for A, and go back to step 1.
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5. If the number of distinct entries in B is equal to the number in A, B

is the color matrix of 〈〈A〉〉.

We call a graph Γ = (V,E) coherent if E is one of the basic relations

of the coherent closure 〈〈Γ〉〉. In other words, a graph is coherent if it is a

basic graph of a suitable coherent configuration.

This recently-introduced concept serves naturally as a combinatorial

analogue of an arc-transitive graph, a concept that is defined in algebraic

terms.

For example, each distance regular graph is a coherent graph.

2.1.4 Mergings

If W ′ is a coherent subalgebra of a coherent algebra W , then the correspond-

ing coherent configuration M′ is called a fusion (or merging configuration)

of M (Note that in many cases, we abuse notation by referring to W and

M as the same object).

If W ′ is a coherent subalgebra of a coherent algebra W , then every

matrix A in standard basis of W ′ is a (0,1)-matrix in W , so it is a sum

of standard basis matrices of W . In coherent configuration language, if

M′ = (Ω,R′) is a merging of M = (Ω,R = {Ri|i ∈ I}), then there is a

partition P of I, such that R′ = {
⋃
i∈B

Ri|B ∈ P}, hence the name merging.

In the case when M = (Ω, 2 − orb(G,Ω)) for a suitable permutation

group G, overgroups of G in S(Ω) provide a natural origin for fusions of

M. Thus, the most interesting fusions (in AGT) are the non-Schurian ones,

that is, those that do not emerge from a suitable overgroup of (G,Ω). The

existence of such fusions suggests that the original configuration has some

combinatorial symmetry that is not of an algebraic origin.

For each subgroup K ≤ AAut(M), its orbits on the set of relations

define a merging coherent configuration, which is called algebraic merging

defined by K. Again, those algebraic mergings which are non-Schurian are

of special interest as less predictable combinatorial objects.
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If W ′ and W ′′ are coherent subalgebras of a coherent algebra W , such

that W ′ and W ′′ are not isomorphic, and in addition there exists φ ∈
AAut(W ) that maps W ′ to W ′′, then W ′ and W ′′ form a pair of algebraic

twins inside of W .

2.2 Triangle-free strongly regular graphs

2.2.1 Strongly regular graphs

A graph Γ is called a strongly regular graph (SRG) with parameters (v, k, λ, µ)

if it is a regular graph of order v and valency k, and every pair of adjacent

vertices has exactly λ common neighbors, while every pair of non-adjacent

vertices has exactly µ common neighbors.

If A = A(Γ) is the adjacency matrix of a simple graph Γ, then Γ is

strongly regular if and only if

A2 = kI + λA+ µ(J − I − A).

This implies that (I, A, J − I − A) is a standard basis of a rank 3 homo-

geneous coherent algebra. In combinatorial notation, (∆,Γ,Γ) are basic

graphs of a rank 3 symmetric association scheme. The adjacency matrix of

a strongly regular graph has exactly 3 distinct eigenvalues. For a strongly

regular graph, we denote:

• r > s, the two eigenvalues of A(Γ) different from k. r is always

positive, while s is always negative;

• f, g as the multiplicity of the eigenvalues r, s respectively.

A formula for f and g is given by

f =
1

2

[
(v − 1)− 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

]
,

g =
1

2

[
(v − 1) +

2k + (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

]
.
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A quadruple of parameters (v, k, λ, µ), for which f and g (as given by

the preceding formulas) are positive integers, is called a feasible set of pa-

rameters. See [18] for a list of all feasible parameter sets for v ≤ 1300 (and

some sets for v > 1300) with information about known graphs for those

parameter sets.

A strongly regular graph Γ is called primitive if both Γ and its com-

plement Γ are connected. This is equivalent to primitivity of the related

association scheme (∆,Γ,Γ).

2.2.2 Triangle free strongly regular graphs

A graph Γ is called triangle-free if it admits no triangles, that is, cliques of

size 3. If Γ is also a strongly regular graph, then it is called a triangle- free

strongly regular graph (tfSRG for short). A graph is triangle-free if any two

neighbors have no common neighbors, therefore a tfSRG is an SRG with

λ = 0.

Dale Mesner ([62],[63]) considered feasible sets of parameters of tfSRGs

with up to 100 vertices, coming up with Table 1.

Mesner defined a set of feasible parameters for a special kind of strongly

regular graphs, calling them negative Latin square graphs. This set of

feasible parameters is itself parametrized by two variables. Setting λ = 0

reduces the set to a subset parametrized by one variable. Those parameters

for tfSRGs are denoted by NLg(g
2 + 3g). An NLg(g

2 + 3g) tfSRG has

parameters ((g2+3g)2, g(g2+3g+1), 0, g(g+1)). In particular, the number

of vertices of such a graph is a square, (g2 + 3g)2.

The table was further filled in 1960 by Hoffman and Singleton ([42]), who

constructed and proved uniqueness of the SRG with parameters (50, 7, 0, 1).

The table was finally completed by Gewirtz in 1969, proving the existence

and uniqueness of the SRG with parameters (56, 10, 0, 2) ([35],[36]).
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No. v k λ µ Existence
1 5 2 0 1 Yes, pentagon
3 10 3 0 1 Yes, Petersen
16 16 5 0 2 Yes, Clebsch
15 28 9 0 4 No, 1956
34 50 7 0 1 ?, Hoffman-Singleton
39 56 10 0 2 ?, Gewirtz
50 64 21 0 10 No, 1956
64 77 16 0 4 Yes, 1956
94 100 22 0 6 Yes, 1956 (uniqueness 1964)

Table 1: Mesner’s table of feasible parameter sets of tfSRGs

◦
◦

◦◦

◦

◦

◦

◦◦

◦

0

1

23

4
5

6

78

9

Figure 1: Petersen graph

2.2.3 The 7 known tfSRGs

2.2.3.1 Pentagon

The Pentagon with parameters (5, 2, 0, 1). Its automorphism group is D5

of order 10.

2.2.3.2 Petersen graph

The Petersen graph with parameters (10, 3, 0, 1). Its automorphism group

is isomorphic to S5 of order 120. A simple model has as vertices 2-subsets

of a set of size 5, with two vertices adjacent if the subsets are disjoint.
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Figure 2: Clebsch graph

2.2.3.3 Clebsch graph

The Clebsch graph has parameters (16, 5, 0, 2). Its automorphism group G

is of order 1920. G is isomorphic to (S5 o S2)
pos, as well as to E24 o S5 and

to the Coxeter group D5. Detailed investigation of this group is in [87].

The Clebsch graph is usually denoted by �5. It is also NL1(4) in Mes-

ner’s negative Latin square tfSRGs series.

A simple model is a 4-dimensional cube Q4 together with long diagonals

(Figure 2), or the Cayley graph:

�5 = Cay(E24 , 0001, 0010, 0100, 1000, 1111).

2.2.3.4 Hoffman-Singleton graph

The Hoffman-Singleton graph with parameters (50, 7, 0, 1). Its automor-

phism group is isomorphic to PΣU(3, 52) of order 252000 ([9]). The sim-

plest model is the Robertson model ([72], see also Figure 3): 5 pentagons

marked P0, . . . , P4 and 5 pentagrams marked Q0, . . . , Q4 with vertex i of Pj

joined to vertex i+ jk (mod 5) of Qk.

2.2.3.5 Sims-Gewirtz graph

The Sims-Gewirtz (or Gewirtz) graph with parameters (56, 10, 0, 2). Its

automorphism group of order 80640 is a non-split extension of PSL3(4) by

E22 . A simple model is the induced subgraph of NL2(10) on the common

non-neighbors of two adjacent vertices.
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Figure 3: Hoffman-Singleton graph, Robertson model

Another classical model, which goes back to Ch. Sims, partitions the

vertex set V = O1 ∪O2 ∪O3.

O1 = {v} is a single vertex. O2 of size 10 consists of all partitions of

the set [0, 5] into two 3-subsets. O3 of size 45 consists of all sets of type

{{a, b}, {c, d}}, where a, b, c, d are distinct elements of [0, 5].

v is adjacent to all vertices of O2. A partition {{a, b, c}, {d, e, f}}
is adjacent to {{a, b}, {d, e}}. Inside O3, {{a, b}, {c, d}} is adjacent to

{{a, c}, {e, f}} and to {{a, e}, {b, f}}.
We get an equitable partition with collapsed adjacency matrix0 10 0

1 0 9

0 2 8

 .

This equitable partition is the metric decomposition with respect to a ver-

tex. This model of the graph is called the Sims model.

Simple combinatorial arguments reveal that the described graph Γ is a

strongly regular graph with parameters (56, 10, 0, 2).

2.2.3.6 Mesner graph

The Mesner graph with parameters (77, 16, 0, 4). The automorphism group

is of order 887040 and is isomorphic to the stabilizer of a point in the

automorphism group of NL2(10). One simple model is: induced subgraph

of NL2(10) on the non-neighbors of a vertex ([63]).
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Figure 4: Mesner’s model of NL2(10)

2.2.3.7 NL2(10) (Higman-Sims graph)

This is the second graph in Mesner’s negative Latin square series, NL2(10)

with parameters (100, 22, 0, 6). It is also (or mainly) known as the Higman-

Sims graph. Its automorphism group contains the Higman-Sims sporadic

simple group as a subgroup of index 2.

Figure 4 depicts an equitable partition corresponding to Mesner’s model

of NL2(10). See [54] for more details about Mesner’s work on tfSRGs, and

specifically about NL2(10).

2.3 Equitable partitions

2.3.1 Definitions and basic properties

Let Γ = (V,E) be a graph. A partition P = {V1, . . . , Vs} of V is called

equitable with respect to Γ if for all k, l ∈ {1, . . . , s}, the numbers |Γ(v)∩Vl|
are constant for all v ∈ Vk. Here, Γ(v) = {u ∈ V |{u, v} ∈ E} is the neighbor

set of vertex v. Usually, an equitable partition of a graph is accompanied

by an intersection diagram, which is a kind of quotient graph on which all

numbers |Γ(v) ∩ Vl| are depicted.
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The adjacency matrix of an equitable partition is a matrix B = (bij)

where bij is exactly |Γ(v) ∩ Vj| for some v ∈ Vi.
Obviously, an adjacency matrix B of an equitable partition admits only

natural numbers as entries, and if Γ is regular of valency k, then the sum

of each row in B is k.

A useful fact in AGT is the following proposition:

Proposition 3. Let Γ be a graph and A = A(Γ) its adjacency matrix. If P

is an equitable partition of Γ and B is the adjacency matrix of P , then the

characteristic polynomial of B divides the characteristic polynomial of A.

If H is a subgroup of Aut(Γ), then the set of orbits of H is an equitable

partition of Γ. Such an equitable partition is called automorphic.

For any partition Q of the vertex set of a graph, there is an equitable

partition P that is finer than Q but coarser than any other equitable par-

tition that is finer than Q. P is called equitable closure of Q. An efficient

algorithm for calculating the equitable closure is stabgraph:

1. For every element v ∈ V , v is in Vk, for every 1 ≤ i ≤ r, ti = |Γ(v)∩Vi|.
define Ov = (k, t1, . . . , tr).

2. Sort the set {Ov|v ∈ V } lexicographically.

3. Define a new partition P ′ = (V ′1 , . . . , V
′
s ) such that v ∈ V ′j if the

position of Ov in the sorted list is j.

4. If the number of cells in P ′ is the same as in P , stop, output is P ′.

5. P := P ′.

6. Go to step 1.

Sometimes we refer to an equitable closure of a set of vertices. By this,

we mean an equitable closure of a partition with two cells: the set and its

complement.

Given a subset W of the set V of vertices of a graph Γ, W induces a

metric partition (or metric decomposition) of V , where two vertices are in
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the same cell if their distance from W is the same. The metric partition is

not necessarily equitable, but when it is, it is the equitable closure of W .

An equitable partition of a graph naturally corresponds to a model of a

graph. For example, in the standard diagram of the Petersen graph, we can

see an equitable partition into two cells corresponding to inner and outer

pentagons. The Robertson model of the Hoffman-Singleton graph may be

thought of as an equitable partition into five Petersen graphs or into 10

pentagons.

Mesner construction of NL2(10) is actually a presentation of an equi-

table partition called non-edge decomposition.

2.3.2 Global vs. local approaches

A global picture of a graph Γ considers Γ as an entity, specifically allowing

the understanding of the whole group Aut(Γ) (which is rank 3, in the case

of the known tfSRGs).

By contrast, local models are formulated in terms of equitable partitions

(or coherent configuration). They only rely on knowledge of a subgroup H

of Aut(Γ). Proof of the existence of Γ in such models typically depends on

ad hoc tricks (with or without the use of a computer). As we mentioned

above, local models are of special significance, presenting possible patterns

which may be emulated in attempts to construct new tfSRGs.

2.4 Schur rings

Schur rings (S-rings for short) were introduced by I. Schur in 1933 ([74]),

and were later developed by H. Wielandt ([82]).

Recall that the group ring C[H] consists of all formal linear combinations

of elements of the group H with coefficients from the field C.

A Schur ring over the group H is a subring A of the group ring C[H],

such that there exists a partition P of H that satisfies:

1. P is a basis of A (as a vector space over C).
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2. {e} ∈ P , where e is the identity element of H.

3. X−1 ∈ P for all X ∈ P .

Here, for a subsetX ofH we defineX−1 = {g−1|g ∈ X} andX =
∑

x∈X 1·x,

while for a set T of subsets we define T = {X|X ∈ T}.
Let (G,Ω) be a permutation group and H a regular subgroup of G. Then

Ω may be identified with H. The stabilizer Ge of the identity element e ∈ H
defines an S-ring over H (see [82]). We denote this S-ring by V (G,H).

An S-ring A is called Schurian if it is equal to V (G,H) for a suitable

overgroup (G,H) of a regular group (H,H). A group H is called a Schur

group if all S-rings over H are Schurian. Schur [74] conjectured that all

groups are Schur groups, or in other words, all S-rings are Schurian. The

first examples of non-Schurian S-rings were presented by Wielandt in [82].

Let H be a group (using multiplicative notation) and S a subset of H.

The Cayley graph Cay(H,S) = (H,R) is a graph with vertex set H and

with arc set R = {〈x, sx〉|x ∈ H, s ∈ S}. A Cayley graph Cay(H,S) is

undirected if S = S−1 and is connected if H = 〈S〉.
Let A be an S-ring over group H, A = {T0, T1, . . . , Ts}, where T0 =

{e}, T1, . . . , Ts are the basic sets of A. It follows from the definitions that

Ti · Tj =
∑s

k=0 p
k
ijTk for suitable non-negative integers pkij, 0 ≤ i, j, k ≤ s.

The numbers pkij are called structure constants of A. We also associate with

A the color graph M = (H,Ri), where for 0 ≤ i ≤ s, Ri is the arc set of

the Cayley graph Cay(H,Ti). With this definition, we get a correspondence

between S-rings and a special class of association schemes, called translation

association schemes.

The concept of a rational S-ring over an Abelian group H goes back to

Schur and Wielandt, see [82], where this concept, under the original name

“S-ring of traces”, is defined and investigated. It seems that the first use

of the term “rational” can be attributed to Bridges and Mena ([14]) who,

at that time, were not aware of the language of S-rings and were working

with equivalent terminology.

Nowadays, this concept may be formulated (in a more or less classical

manner) for a wider class of commutative association schemes. There are
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several possible ways to generalize it to the case of arbitrary association

schemes (also including S-rings over finite groups). We use the following

definition (cf. [49]):

Definition 1. A graph Γ is called rational if the spectrum of its adjacency

matrix is rational (in fact, integer). An association scheme (S-ring) is

rational if all its basic graphs are rational.

The S-rings over cyclic groups were classified by Leung and Man in

[57, 56]. In 2004, Muzychuk, using the classification by Leung and Man,

offered a complete solution for the isomorphism problem for circulant graphs

([65]).

Hanaki and Miyamoto ([64]) classified all association schemes of small

order; specifically, all S-rings over groups of order up to 35.

Sven Reichard classified all S-rings over groups of order up to 47, as

announced in [69].

2.5 Semisymmetric graphs

2.5.1 Definitions and basic facts

An undirected graph Γ = (V,E) is called semisymmetric if it is regular (of

valency k) and Aut(Γ) acts transitively on E and intransitively on V .

The proposition below is attributed by F. Harary to Elayne Dauber; its

proof appears in [39] and [55].

Proposition 4. A semisymmetric graph Γ is bipartite with the partitions

V = V1 ∪ V2, |V1| = |V2|, and Aut(Γ) acts transitively on both V1 and V2.

The interest in semisymmetric graphs goes back to the seminal paper

[31], where they were called admissible graphs. The word “semisymmetric”

was suggested in [48].

Example 1 (The semisymmetric Folkman graph on 20 vertices). Let V1 ={
[0,4]
2

}
be the set of all 2-element subsets of the 5-element set [0, 4]. Let
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V2 = [0, 4]×{1, 2}. Define V = V1∪V2, E = {{{a, b}, (a, i)}|a, b ∈ [0, 4], i ∈
{1, 2}, a 6= b}. It is easy to check that the direct product of the symmetric

group S5 with S2 acts transitively on the sets V1, V2, E. Moreover, this is the

full automorphism group of the resulting graph F = (V,E). (For the proof,

it is helpful to notice that Aut(F) acts primitively on V1 and imprimitively

on V2.)

At first, interest in semisymmetric graphs was sustained by represen-

tatives of the Soviet school of graph theory. The paper [79] immediately

attracted the interest of researchers from the USSR to the several open

questions about semisymmetric graphs which were posed by Folkman in

[31] and repeated in [79]. A general method to construct semisymmetric

graphs with the aid of the multi-hypergraphs was suggested by V. K. Titov

in [77]. Below, we present the semisymmetric graph on 24 vertices, con-

structed by Titov.

Example 2. Let V1 = [0, 3] × {1, 2, 3}, V2 =
{
[0,3]
2

}
× {4, 5}, V = V1 ∪ V2,

E = {{(x, i), ({x, y}, j)}|x, y ∈ [0, 3], x 6= y, i ∈ {1, 2, 3}, j ∈ {4, 5}}. We

suggest that the reader verify that the resulting graph T = (V,E) on 24

vertices and valency 6 is a semisymmetric graph with |Aut(T )| = 213 · 35.

Note that the group Aut(T ) may be easily described as a generalized wreath

product (in the sense of [85]) of the group S4, acting on orbits of lengths 4

and 6 with groups S3 and S2, respectively. Here |Aut(T )| = 4! · (3!)4 · (2!)6.

Following [43] let us call a semisymmetric graph Γ = (V,E), V = V1∪V2,
of parabolic type if the stabilizers H1, H2 of vertices x ∈ V1 and y ∈ V2

respectively are not conjugate in the symmetric group Sym(V ) (Note that

we slightly modify the original definition in [43]). If the two stabilizers are

conjugate, the graph Γ is called of non-parabolic type.

For a semisymmetric graph of parabolic type, proving that it is semisym-

metric is easier, since we can distinguish between vertices from the different

parts with the aid of simple combinatorial arguments, using suitable nu-

merical or structural invariants of the vertices. The above two examples

serve as simple representatives of the parabolic case.
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Let Γ be a bipartite graph with partition V = V1 ∪ V2 of its vertices.

In what follows, we assume that Γ is an edge-transitive regular graph of

valency k. Then it follows from Proposition 4 that the group Aut(Γ) either

acts transitively on V , or acts intransitively with two orbits V1 and V2 of

equal length. Let us denote by Aut−(Γ) the subgroup of Aut(Γ) which

stabilizes each set V1 and V2 separately. Then clearly, [Aut(Γ) : Aut−(Γ)] =

1 or 2, depending on whether Aut(Γ) acts on V transitively or intransitively,

respectively.

Definition 2. Let ∆ = (V,R) be a directed graph. Define a new undi-

rected graph Γ = (V (Γ), E(Γ)), such that V (Γ) = V × {1, 2}, E(Γ) =

{{(x, 1), (y, 2)}|(x, y) ∈ R}.

We will call Γ the incidence double cover (IDC for short) of ∆.

An alternative way to explain the construction of double cover involves

the use of matrices. For an arbitrary graph ∆ (directed arcs and loops

are allowed), denote by A(∆) its adjacency matrix. Clearly, any arbitrary

square (0,1)-matrix is the matrix A(∆) for a suitable graph ∆. However,

we may interpret the matrix A = A(∆) as the incidence matrix I(S) of

a suitable incidence structure S. Here, rows of A = (aij) correspond to

points of S, while columns correspond to blocks of S. An element aij is

equal to 1 if and only if the point defined by row i is incident to the block

defined by row j. The result is that we consider the incidence (Levi) graph

of the incidence structure S (cf. [23]). Note that the number of points in

S is equal to the number of blocks. Such incidence structures are called

configurations, if the incidence graph happens to be regular and does not

contain quadrangles.

A survey of the general properties of this correspondence is provided in

[19]. Note that this explanation justifies the name “incidence double cover”.

2.5.2 Nikolaev graph N

The graph N is a semisymmetric graph of valency 15 on 112 vertices, which

was discovered on October 30, 1977 at Nikolaev (Ukraine). It is the first



2.5. SEMISYMMETRIC GRAPHS 27

member of an infinite family of semisymmetric graphs. Its construction

was presented in [48], where the term “semisymmetric” was coined. The

main motivation of [48] was to provide an affirmative answer to a question

posed by Folkman [31] about the existence of a semisymmetric graph with

v vertices and valency k, such that gcd(v, k) = 1. Indeed, for the graph N ,

we get gcd(112, 15) = 1.

The construction of N = (V,E) is as follows:

Let the set of vertices V = V1 ∪ V2, V1 = {(a, b)|a, b ∈ [0, 7], a 6= b} and

V2 = {X ⊆ [0, 7]||X| = 3}. The edge set E ofN is E = {{(a, x), {a, b, c}}|x 6∈
{a, b, c}}.

Proposition 5. (i) N is a semisymmetric graph with 112 vertices and

valency 15;

(ii) Aut(N ) ∼= S8.

Thus the graph N serves as a nice example of a parabolic case of

semisymmetric graphs: here, as in Example 1, the fact that Aut(N ) acts

intransitively on the set V can be justified by simple arguments of a com-

binatorial or group-theoretic nature.

2.5.3 Ljubljana graph L

In 2001, during a brief visit to Ljubljana, M. Conder together with Slove-

nian colleagues constructed a cubic semisymmetric graph on 112 vertices,

which was described as a regular Z3
2-cover of the Heawood graph. Fol-

lowing Conder’s suggestion, the graph was called the Ljubljana graph and

denoted by L. A computer-based search showed that L is the unique cubic

semisymmetric graph on 112 vertices.

In fact, in [13], a reference was already given to a private communi-

cation by R. M. Foster, who found a cubic semisymmetric graph on 112

vertices with girth 10. However, Foster did not communicate to Bouwer

any description of his graph. Thus, there was evident reason to attribute

to this graph the new suggested name, inspired by the lucky reincarnation

of L achieved in the capital of Slovenia. The graph L was also studied in a
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series of papers by I. J. Dejter and his coauthors [12], [16], [24], [25], which

were not known to the authors of [21] in 2001. A detailed report about the

graph L was published [21]. Soon after, the suggested name became well

known, see e.g. [83]. We adopt the existing name, “Ljubljana graph”. As

sometimes happens in mathematics, some names seem luckier than others,

and under this name, this graph is now enjoying a new wave of attention.

A more involved computer search (announced already in [21]) revealed that

the graph L is in fact the third smallest cubic semisymmetric graph.

The paper [21] indeed provides a lot of interesting information about the

graph L. The graph is defined in an evident form with the aid of voltage

assignments; cycles of length 10 and 12 are completely classified; L is proved

to be Hamiltonian and thus its LCF code (in the sense of [32]) is provided.

The group Aut(L) of order 168 is discussed, together with its action on L
and some subgroups. Moreover, it is shown that the edge graph L(L) of L
is a Cayley graph over Aut(L).

2.6 Cages

The cage notion goes back to W. T. Tutte (see e.g. [78]), who established

the foundation of the theory for a particular case of cubic graphs (regular

graphs of valency 3).

According to [73], for arbitrary k ≥ 3 and g ≥ 3 there exists at least

one regular graph of valency k and girth g. A regular graph of valency k

and girth g, such that there are no smaller graphs with the same valency

and girth, is called a (k, g)-cage ([11]).

There is a natural lower bound for the number of vertices in a (k, g)-cage,

commonly denoted by n0(k, g), which is formulated separately for odd and

even girths (see [11]). Graphs that attain this bound are very rare (Moore

graphs for g odd, and incidence (Levi) graphs of generalized polygons for g

even).

The problem of description of (k, g)-cages is completely solved only for

a small set of parameters k, g.
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An important characteristic feature of the classical cages such as Moore

graphs and Levi graphs of generalized quadrangles is that they are coherent,

and moreover, they are distance regular. Therefore, a coherent closure of

such a graph is a (metrical) association scheme.

In this context, it is natural to expect that those cages which are also

coherent, are in a sense very close (from the algebraic graph theory stand-

point) to the classical cages.

Cages of valency 3 are investigated with reasonable success; all of them

are known for having girth of ten at the most, see e.g. [70].

The case of (k, 3)-cages is in a sense degenerate, these are complete

graphs Kk+1. Cages of girth 4 are complete bipartite graphs.

Cages of girth 6 (projective planes) are classical objects of investigation

in the area of finite geometries. The unique (6, 5)-cage will play a role in

this thesis.

Below, we consider cages of girth 5 with more attention. It is well-known

that non-trivial Moore graphs may exist only for g = 5, and there are only

3 possibilities for the valency, namely k = 3, k = 7 or k = 57, leading to

strongly regular graphs with k2 + 1 vertices. The unique Moore graph of

valency 3 is the Petersen graph, and the unique Moore graph of valency 7 is

the Hoffman-Singleton graph. The question as to the existence of a Moore

graph of valency 57 is still open.

The cages of girth 5 and valency 3, 4, 5, 6, 7 have, respectively, 10, 19,

30, 40 and 50 vertices, all of which have been completely classified. Below,

we consider valencies 6 and 7.

Following a pioneering paper by C. W. Evans ([26]), we consider in a

given graph Γ = (V,E) set Sn of all cycles (circuits) of length n. Γ is

called a general net if and only if there exists S∗ ⊆ Sn such that given any

edge e ∈ E, there are exactly two cycles C1, C2 ∈ S∗ such that e ∈ C1 and

e ∈ C2. In general, the girth g ≤ n. When g = n, Γ will be called a general

g net. Moreover, Γ is called a general g net cage of valency k if Γ is also a

(k, g)-cage. An embeddable net may be drawn on a surface.

A number of net cages are investigated in [26], including K4, Cube,

Petersen graph and Heawood graph for valency 3. A net of valency 6 and
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girth 5 on 40 vertices was constructed by Evans. At the time of publication

of [26], he was not precisely aware that this graph is a cage.

2.7 Computer tools

The use of computers in AGT allows for calculations which are infeasible

by hand. This allows us to find new combinatorial objects, to enumerate

objects with specific sets of properties, and to find algebraic features (such

as automorphism group) of objects. These findings can be used to achieve

theoretical results.

2.7.1 COCO

COCO is a set of programs used for dealing with coherent configurations.

It was developed in 1990-1992 in Moscow, USSR, mainly by Faradžev

and Klin [29], [30].

The programs include:

• ind - a program for calculating induced action of a permutation group

on a combinatorial structure;

• cgr - a program to calculate the centralizer algebra of a permutation

group;

• inm - a program to calculate the structure constants of a coherent

configuration;

• sub - a program to find fusion association schemes of a coherent con-

figuration given its structure constants;

• aut - a program to calculate automorphism groups of a coherent con-

figuration and its fusion association schemes.

Usually, these programs are used in the above order. This provides a com-

puterized way to find all association schemes invariant under a given per-

mutation group, together with their automorphism groups.
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2.7.2 WL-stabilization

The Weisfeiler-Leman stabilization is an efficient algorithm for calculating

the coherent closure of an adjacency matrix of a simple graph (see [81],

[80], [4]). Two implementations of (a variation of) the WL-stabilization are

available (see [3]), denoted by stabil and stabcol.

In [8], Bastert notes that the algorithm as implemented in stabil and

stabcol only applies to symmetric matrices, while in general it is useful

to apply it to any matrix. He created a third implementation, qweil, by

adding an initial step to the algorithm, closing the matrix under transposi-

tion before commencing with the usual stabilization. For a matrix contain-

ing only integer values from 0 to n − 1, the initial step can be defined as

replacing A by A+ nAT .

While those implementations of the WL-stabilization are available, in

many cases, we are only interested in finding out a lower bound for the rank

of the closure (in order to prove that it is Schurian), in which case an ad

hoc calculation is sufficient.

2.7.3 GAP

GAP [33], an acronym for “Groups, Algorithms and Programming”, is a

system for computation in discrete abstract algebra. It supports easy ad-

dition of extensions (packages, in GAP nomenclature) that are written in

the GAP programming language, which can add new features to the GAP

system.

One such package, which is very useful in AGT, is GRAPE [76]. It is

designed for the construction and analysis of finite graphs. GRAPE itself

is dependent on an external program, nauty [61], in order to calculate the

automorphism group of a graph.

Another package is DESIGN, used for construction and examination of

block designs.

GAP is used in the course of investigations in AGT in order to:

• Construct incidence structures (graphs, block designs, geometries, co-
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herent configurations, etc.)

• Compute automorphism groups of such structures.

• Check regularity properties and parameters of structures.

• Find cliques in graphs, and substructures of given structures in gen-

eral.

• Find the abstract structure of a group, as well as identify a permuta-

tion group.

• Find conjugacy classes of elements and subgroups of a group.

2.7.4 COCO v.2

While a lot of calculations in AGT are done in GAP, some algorithms

or operations are only available in certain other programs discussed above.

This results in a permanent necessity to translate the output of one program

to a format that is acceptable as input to the other program.

The COCO v.2 initiative aims to re-implement the algorithms in COCO,

WL-stabilization and DISCRETA as a GAP package. In addition, the new

package should essentially extend the abilities of the current version, based

on new theoretical results obtained since the original COCO package was

written.

COCO v.2 is developed by S. Reichard and C. Pech, and is currently

still in development.

2.7.5 Ad-hoc tools

While GAP is very useful for computation in AGT, its roots in algebra

(specifically group theory) cause inefficiency in some combinatorial calcula-

tions. In some cases, implementing the same brute force search algorithms

in C can result in reduction of memory use by a factor of 100, and speed

increase by a factor of 1000. In more sophisticated cases, we don’t imple-

ment the whole algorithm in C, but instead choose to compute some parts

in GAP and other parts in C, thus enjoying the best of both worlds.



Chapter 3

Triangle-free strongly regular

graphs

3.1 Embeddings of tfSRGs inside tfSRGs

As we saw in the description of the known tfSRGs, some of the constructions

use smaller tfSRGs as a basis, or as a building block. Examples are the

construction of the Petersen graph from two pentagons, and of the Hoffman-

Singleton graph from 5 Petersen graphs. Therefore, a full knowledge of

embeddings of tfSRGs inside tfSRGs may be useful when attempting to

construct new tfSRGs.

Some embeddings of tfSRGs inside larger tfSRGs were already known,

see for example the description of Higman-Sims in [17]. But to the best of

our knowledge, no systematic complete description has ever been published.

A tfSRG subgraph of a tfSRG is an induced subgraph, due to the fol-

lowing Proposition:

Proposition 6. A subgraph ∆ of diameter 2 of a graph Γ with no triangles

is an induced subgraph.

Proof. If ∆ is not induced, then there are vertices v, w that are adjacent in

Γ and not adjacent in ∆. Since the diameter of ∆ is 2, there is a vertex u

33
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such that vuw is a path in ∆. But then, vuw is a triangle in Γ, which is a

contradiction.

3.1.1 Computer results

Table 2 lists the results of the computer enumeration of tfSRGs inside tfS-

RGs. Table 3 lists the number of orbits under the action of the automor-

phism group of the inclusive graph.

3.1.2 Theoretical view of some embeddings

The number of pentagons inside any tfSRG (known, or yet unknown) de-

pends solely on the parameters v, k, µ. This can be shown with the aid of

simple combinatorial arguments:

Proposition 7. The number of pentagons inside an SRG with parameters

(v, k, 0, µ) is vk(k−1)(k−µ)µ
10

.

Proof. There are v options to select a vertex, k options to select a second

vertex, and k−1 options to select a third vertex. To select the fourth vertex,

we want to select a neighbor of the third vertex which is not a neighbor of

the first vertex (the pentagon is induced), therefore there are k−µ options.

The fifth vertex is a neighbor of two non-neighbors, so there are µ options.

Every pentagon is constructed exactly 10 times in the above construc-

tion.

By a theorem of Mesner ([62]), the induced graph on non-neighbors of

a vertex in a Clebsch graph (NL1(4) in Mesner notation) is a Petersen

graph. This gives us 16 Petersens inside a Clebsch graph, and since the

Clebsch graph is vertex-transitive, they are all in the same orbit. We can

see, without the use of a computer, that there are no other Petersen graphs

inside a Clebsch graph:

Proposition 8. If the induced subgraph on ten vertices of a Clebsch graph

is isomorphic to a Petersen graph, then these ten vertices are the non-

neighbors of a vertex of a Clebsch graph.
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Proof. Consider the induced graph ∆ on the remaining 6 vertices. This

graph has 40− 20− 15 = 5 edges. Every pair of non-adjacent vertices in a

Petersen graph has 1 common neighbor in the remaining vertices, so if the

valencies of ∆ are a1, . . . , a6, then
∑6

i=1

(
5−ai
2

)
= 30. The only solution (up

to order) is a1 = 5, a2 = · · · = a6 = 1.

Similarly, for NL2(10), the induced graph on non-neighbors of a vertex

is isomorphic to a Mesner graph. This gives us 100 Mesner graphs inside

NL2(10), all in the same orbit. There are no more such graphs.

Proposition 9. If the induced subgraph on 77 vertices of NL2(10) is iso-

morphic to a Mesner graph, then these 77 vertices are the non-neighbors of

a vertex of NL2(10).

Proof. Consider the induced graph ∆ on the remaining 23 vertices. This

graph has 1100− 77·16
2
−77·6 = 22 edges. Every pair of non-adjacent vertices

in a Mesner graph has 2 common neighbors in the remaining vertices, so if

the valencies of ∆ are a1, . . . , a23, then
∑23

i=1

(
22−ai

2

)
= 2 · 2310. The only

solution (up to order) is a1 = 22, a2 = · · · = a23 = 1.

We can generalize these two propositions to all negative Latin square

graphs.

Theorem 10. let Γ be a NLg(g
2 + 3g) graph, and let V1 be a subset of

vertices such that the induced subgraph is an SRG with parameters ((g2 +

2g − 1)(g2 + 3g + 1), g2(g + 2), 0, g2). Then V1 is the set of non-neighbors

of a vertex of Γ.

Proof. Recall that the parameters of Γ are ((g2+3g)2, g(g2+3g+1), 0, g(g+

1)). Let V2 = V (Γ)\V1, so v = |V2| = (g2+3g)2−(g2+2g−1)(g2+3g+1) =

1 + g(g2 + 3g + 1). Let ∆ be the induced subgraph of Γ on V2, the number

of edges of ∆ is

e =
(g2 + 3g)2g(g2 + 3g + 1)

2
− (g2 + 2g − 1)(g2 + 3g + 1)g2(g + 2)

2
−

− (g2 + 2g − 1)(g2 + 3g + 1)(g(g2 + 3g + 1)− g2(g + 2)) =

= v − 1.
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The parameter µ (the number of common neighbors of two non-adjacent

vertices in the graph) is g2 + g for Γ and g2 for the induced subgraph, so

the difference is g. This means that V2 must include g common neighbors

for every pair of non-neighbors in V1.

If we denote the valency of vertex i in ∆ by di, then the number of

neighbors i has in V1 is g(g2 + 3g + 1) − di. This means it is a common

neighbor of
(
g(g2+3g+1)−di

2

)
=
(
v−1−di

2

)
pairs of (non-adjacent) vertices in V1.

Summing over all v vertices of ∆, we get:

v∑
i=1

(
g(g2 + 3g + 1)− di

2

)
= g(g2 + 2g − 1)(g2 + 3g + 1)·

· (g2 + 2g − 1)((g2 + 3g + 1)− g2(g + 2)− 1)

2
=

= (v − 1)

(
(v − 2)

2

)
.

The valency of vertex i in ∆ is di = v − 1− di, so

v∑
i=1

(
g(g2 + 3g + 1)− di

2

)
=

v∑
i=1

(
v − 1− di

2

)
=

=
v∑
i=1

di(di − 1)

2
=

=
v∑
i=1

d
2

i

2
−

v∑
i=1

di
2
.

Combining the two equalities, and recalling that
∑v

i=1
di
2

is the number of

edges of ∆, e(∆) = v(v−1)
2
− (v − 1) = (v−1)(v−2)

2
, we get

v∑
i=1

d
2

i

2
= (v − 1)

(
(v − 2)

2

)
+ e(∆)

multiplying by 2,

v∑
i=1

d
2

i = (v − 1)(v − 2)(v − 3) + (v − 1)(v − 2) = (v − 1)(v − 2)2.

By Theorem 1 of [1], the maximum of the sum of squares for graphs on v

vertices with
(
v
2

)
− (v− 1) =

(
v−1
2

)
edges is attained only on the graph with
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Figure 5: Mesner decomposition of NLg(g
2 + 3g)

Pentagon Petersen Clebsch HoSi Gewirtz Mesner NL2(10)

Pentagon 1 12 192 1260 8064 88704 443520

Petersen 1 16 525 13440 1921920 35481600

Clebsch 1 0 0 0 924000

HoSi 1 0 0 704

Gewirtz 1 22 1030

Mesner 1 100

NL2(10) 1

Table 2: Number of tfSRGs inside tfSRGs

one independent vertex and a clique with v − 1 vertices (A quasi-complete

graph on v vertices and e = (v−1)(v−2)
2

, in the language of [1]), and this

maximum is (v − 1)(v − 2)2 . This means that ∆ must be a star graph,

and V1 is the set of non-neighbors of the vertex of maximal valency in the

star.
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Pentagon Petersen Clebsch HoSi Gewirtz Mesner NL2(10)

Pentagon 1 1 1 1 1 1 1

Petersen 1 1 1 1 9 5

Clebsch 1 0 0 0 1

HoSi 1 0 0 1

Gewirtz 1 1 1

Mesner 1 1

NL2(10) 1

Table 3: Number of orbits of tfSRGs inside tfSRGs

Pentagon Petersen Clebsch HoSi Gewirtz Mesner NL2(10)

Pentagon 10 10 10 200 10 10 200

Petersen 120 120 480 6 6,6,6,2,6,2,6,6,6 240,24,6,6,48

Clebsch 1920 96

HoSi 252000 126000

Gewirtz 80640 40320 80640

Mesner 887040 887040

NL2(10) 88704000

Table 4: Orders of stabilizers of tfSRGs inside tfSRGs

HoSi Gewirtz Mesner NL2(10)

Pentagon (Z5oZ4)×D5 D5 D5 (Z5oZ4)×D5

S3, S3,Z6, SL2(5)oZ2,
Petersen (SL2(5)oZ2)oZ2 Z6 Z2,Z6,Z2, (Z6×Z2)oZ2,

S3, S3, S3 S3,Z6,GL2(3)

Clebsch Z4×S4
HoSi PSU3(5)oZ2 PSU3(5)

Gewirtz (L3(4)oZ2)oZ2 L3(4)oZ2 (L3(4)oZ2)oZ2

Mesner M22oZ2 M22oZ2

NL2(10) HSoZ2

Table 5: Structure of stabilizers of tfSRGs inside tfSRGs
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3.1.3 Imprimitive tfSRGs inside primitive tfSRGs

An imprimitive tfSRG has an even number of vertices, 2l, and is either a

complete bipartite graph Kl,l or a regular graph of valency 1 (l edges, with

no two of them having a common vertex).

In the case of complete bipartite graphs, when l = 2 we get a quadrangle.

Since l ≤ µ, the case l = 3 is only relevant for Mesner and NL2(10). For

both graphs, there is no induced subgraph isomorphic to K3,3.

Proposition 11. Let Γ be an SRG with parameters (v, k, λ, µ).

1. The number of quadrangles in Γ is
vk
2 (λ2)+

v(v−k−1)
2 (µ2)

2
. When λ = 0 it

reduces to v(v−k−1)µ(µ−1)
8

.

2. The number of edges in Γ is vk
2

.

3. The number of pairs of two non-adjacent edges in Γ is
vk
2
( vk

2
−1−2k(k−1))

2
+

v(v−k−1)µ(µ−1)
4

.

The results of a computer search are available in Tables 6 and 7. There

is no induced subgraph of NL2(10) isomorphic to 12 ◦K2.

An interesting fact apparent from the tables is that for each graph, all

the largest induced subgraphs of valency 1 are in the same orbit of the

automorphism group.
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Quadrangle edge 2 edges 3 4 5
Pentagon 0 5 0 0 0 0
Petersen 0 15 15 5 0 0
Clebsch 40 40 60 40 10 0

HoSi 0 175 7875 128625 845250 2170350
Gewirtz 630 280 15120 245280 1370880 2603664
Mesner 6930 616 55440 1330560 10589040 28961856
NL2(10) 28875 1100 154000 5544000 67452000 301593600

6 edges 7 edges 8 9 10 11
HoSi 1817550 40150 15750 3500 350 0

Gewirtz 1643040 104160 7560 1400 112 0
Mesner 24641232 3664320 166320 30800 2464 0
NL2(10) 477338400 258192000 14322000 924000 154000 11200

Table 6: Number of imprimitive tfSRGs inside tfSRGs

Quadrangle edge 2 edges 3 4 5 6
Pentagon 0 1 0 0 0 0 0
Petersen 0 1 1 1 0 0 0
Clebsch 1 1 1 1 1 0 0

HoSi 0 1 1 4 10 21 15
Gewirtz 1 1 2 9 30 48 36
Mesner 1 1 1 7 26 56 50
NL2(10) 1 1 1 2 7 14 17

7 edges 8 9 10 11
HoSi 8 1 1 1 0

Gewirtz 5 2 2 1 0
Mesner 14 2 2 1 0
NL2(10) 14 3 2 2 1

Table 7: Number of orbits of imprimitive tfSRGs inside tfSRGs
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3.2 Equitable partitions of tfSRGs

As mentioned above, if larger tfSRGs exist, they are not as symmetric as

the known tfSRGs. Thus, equitable partitions which correspond to models

of a graph, and that do not rely on large automorphism groups, may be a

useful tool in investigating larger tfSRGs. As a first step, we wish to have

a better understanding of the equitable partitions of the known tfSRGs.

The goal is to enumerate all equitable partitions of the known triangle-

free strongly regular graphs. For the Pentagon, the Petersen graph and

the Clebsch graph enumeration can be easily done by a computer. For

the Hoffman-Singleton graph, a combination of simple theoretical work and

extensive computer search yields the desired enumeration. For the Sims-

Gewirtz graph, we settled for an enumeration of non-rigid equitable parti-

tions. For the Mesner graph and NL2(10), we enumerated all automorphic

equitable partitions.

Table 8 summarises the number of equitable partitions and automorphic

equitable partitions. In Tables 9–15, the information for each graph is

given in more detail, according to the size (number of cells) of the equitable

partitions.

Pentagon Petersen Clebsch HoSi Gewirtz Mesner NL2(10)
EP 3 11 46 163
Aut 3 11 38 89 154 236 607

Table 8: Number of orbits of equitable partitions and of automorphic equi-
table partitions for known tfSRGs.

Size 1 3 5
EP 1 1 1
Aut 1 1 1

Table 9: Number of orbits of EPs and automorphic EPs of the pentagon by
size of partition
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Size 1 2 3 4 5 6 7 10
EP 1 2 2 2 1 1 1 1
Aut 1 2 2 2 1 1 1 1

Table 10: Number of orbits of EPs and automorphic EPs of the Petersen
graph by size of partition

Size 1 2 3 4 5 6 7 8 9 10 12 16
EP 1 4 6 12 5 7 3 4 1 1 1 1
Aut 1 4 5 10 3 5 2 4 1 1 1 1

Table 11: Number of orbits of EPs and automorphic EPs of the Clebsch
graph by size of partition

Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 28 30 50
EP 1 6 8 16 18 20 19 18 11 11 8 7 7 2 2 1 2 3 1 1 1
Aut 1 4 5 7 6 9 9 11 4 9 4 4 4 2 1 1 2 3 1 1 1

Table 12: Number of orbits of EPs and automorphic EPs of the Hoffman-
Singleton graph by size of partition

Size 1 2 3 4 5 6 7 8 9 10 11 12 13
NR 1 34 131 108 83 68 63 63 61 49 32 14 9
Aut 1 5 9 12 12 14 15 16 14 11 7 7 6
Size 14 15 16 17 18 19 20 23 28 31 32 35 56
NR 9 3 7 6 3 2 4 1 1 1 1 1 0
Aut 5 0 3 3 2 2 4 1 1 1 1 1 1

Table 13: Number of orbits of automorphic and non-rigid EPs of the
Gewirtz graph by size of partition

Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Aut 1 3 5 8 11 10 20 14 19 12 18 12 16 9 14
Size 16 17 18 19 20 21 23 25 29 33 41 45 49 77
Aut 5 12 5 9 1 8 4 8 6 2 1 1 1 1

Table 14: Number of orbits of automorphic EPs of the Mesner graph by
size of partition
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Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Aut 1 6 15 21 28 29 31 42 34 35 37 49 30 31 27
Size 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Aut 26 18 18 13 26 14 11 7 9 6 6 5 2 1
Size 30 31 32 33 34 35 39 40 45 50 53 60 65 100
Aut 7 1 3 2 2 3 1 4 1 1 1 1 1 1

Table 15: Number of orbits of automorphic EPs of NL2(10) by size of
partition

partition |stabilizer|
{{0}, {1}, {2}, {3, 7}, {4, 5}, {6}, {8, 9}} 12
{{0}, {1}, {2, 6}, {3, 8}, {4, 5}, {7, 9}} 8
{{0}, {1}, {2, 6}, {3, 7, 8, 9}, {4, 5}} 8
{{0}, {1, 4, 5}, {2, 8, 9}, {3, 6, 7}} 12
{{0}, {1, 4, 5}, {2, 3, 6, 7, 8, 9}} 12
{{0, 1}, {2, 4, 5, 6}, {3, 8}, {7, 9}} 24
{{0, 1}, {2, 4, 5, 6}, {3, 7, 8, 9}} 8
{{0, 1, 3, 7, 8, 9}, {2, 4, 5, 6}} 24
{{0, 1, 2, 3, 4}, {5, 6, 7, 8, 9}} 20

Table 16: Equitable partitions of a Petersen graph

3.2.1 Pentagon

The pentagon has three equitable partitions (up to the action of Aut(pentagon)),

of which the only non-trivial one is the distance partition of a vertex. The

stabilizer of this partition is the stabilizer of the vertex, of order 2.

From now on, we will ignore the two trivial equitable partitions.

3.2.2 Petersen graph

The Petersen graph admits 9 equitable partitions, which are easy to enu-

merate, either by hand or by a brute force computer search.

Using a standard enumeration of vertices (see Figure 1), representatives

of the orbits of equitable partitions together with the order of their stabilizer

are listed in Table 16.
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3.2.3 Clebsch graph

There are 44 equitable partitions in a Clebsch graph. This is the last case

where a brute force computer search is feasible. See Appendix A.1 for a

summary of the results.

3.2.4 Hoffman-Singleton graph

The Hoffman-Singleton graph (HoSi) is an SRG with parameters (50, 7, 0, 1).

G = Aut(HoSi) is of order 252000 = 50 ·7! and is transitive on vertices,

edges and non-edges. We are only looking to enumerate equitable partitions

up to the action of G.

We use the specific representation of HoSi that was generated by an

implementation in GAP of the Robertson model. Vertices are enumerated

1..50. By Vi we denote the set of neighbors of vertex i.

V1 = {2, 5, 27, 33, 39, 45, 46}.
We will denote the non-1 neighbors of elements of V1 by W1, . . . ,W7 in

the same order. [1, 50] = {1} ∪ V1 ∪W1 ∪ · · · ∪W7. Furthermore, this is a

disjoint union.

For two vertices x, y, we denote their common neighbor by x · y.

3.2.4.1 Summary of results

A summary of the enumeration of equitable partitions of a Hoffman-Singleton

graph (up to action of the automorphism group) is in Table 17.

The count of partitions with a given number of cells does not include

partitions with cells smaller than ten.

For each of these partitions, the stabilizer in Aut(HoSi) is a non-trivial

subgroup.

3.2.4.2 Partitions with small cells

Let us enumerate the equitable partitions according to the minimal size of

a cell in the partition.
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Min size No. cells No. partitions automorphic non-automorphic
1 86 56 30
2 13 11 2
4 2 2 0
5 43 11 32
7 1 1 0
8 1 1 0

2 6 4 2
3 4 1 3
4 3 0 3
5 2 0 2

total 161 87 74

Table 17: Summary of equitable partitions of a Hoffman-Singleton graph

The word ’partition’ has two meanings in mathematics. A partition

of a set and a partition of a positive integer, that is, a way to write the

number as a sum of positive integers. We will refer to the latter as an

integer partition.

Partitions with the smallest cell of size 1 Let P be an equitable

partition with a cell of size 1. Since G is transitive on vertices, we may

assume this cell is {1}.
The rest of P is a union of two partitions, one of V1 and the other of

T = V \ {1} \ V1 of size 42. Let us note that T is a disjoint union of the 7

sets of size 6: Wx = Vx \ {1} for x ∈ V1.
The stabilizer in G of 1, G1 acts as S7 on V1, therefore we do not care

about the actual partition of V1, but only about its type (sizes of cells).

There are 15 integer partitions of 7, therefore we have 15 types of partitions

of V1.

The partition of V1 implies strong limitations on the partition of T : if

x, y are two vertices in the same set in the partition of V1, and T1 is a set in

the partition of T , then the intersections T1∩Vx and T1∩Vy are of the same

size. Additionally, if x, y are not in the same set, then T1 can’t intersect

both Vx and Vy.
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Those limitations reduce the brute force search space to a manageable

size.

• In the case that the partition of V1 is {V1}, then instead of considering

all 242 subsets of T as possible cells of the partition, we only need to

consider 67 + 157 + 207 + 157 + 67 + 1 subsets, a large but reasonable

number. Since we are looking for equitable partitions, we only look at

those subsets that induce a regular subgraph. This leaves only 8610

subsets, and the search can be completed in a short time, revealing

10 equitable partitions.

• If the partition of V1 is {{2}, {5, 27, 33, 39, 45, 46}}, then the stabilizer

of 1 and 2 acts on W1 (neighbors of 2 other than 1) as S6, so we have

11 ways to partition W1. Each of those partitions limit the partition

of the rest of T , similar to the way that the partition of V1 does, so

the search is easy. There are 27 equitable partitions of this type.

• If the partition of V1 is {{2, 5}, {27, 33, 39, 45, 46}}, there are 8 equi-

table partitions.

• If the partition of V1 is {{2, 5, 27}, {33, 39, 45, 46}}, there are 10 equi-

table partitions.

• If the partition of V1 is {{2}, {5}, {27, 33, 39, 45, 46}}, there are 7 eq-

uitable partitions.

• If the partition of V1 is {{2, 5}, {27, 33}, {39, 45, 46}}, there are 8 eq-

uitable partitions.

• If the partition of V1 is {{2}, {5, 27}, {33, 39, 45, 46}}, there are 8 eq-

uitable partitions.

• If the partition of V1 is {{2}, {5, 27, 33}, {39, 45, 46}}, there are 3 eq-

uitable partitions.

• If the partition of V1 is {{2}, {5}, {27}, {33, 39, 45, 46}}, there are 5

equitable partitions.
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• If the partition of V1 is {{2}, {5, 27}, {33, 39}, {45, 46}}, there are 5

equitable partitions.

• If the partition of V1 is {{2}, {5}, {27, 33}, {39, 45, 46}} there are 6

equitable partitions.

• If the partition of V1 is {{2}, {5}, {27}, {33, 39}, {45, 46}}, there are

3 equitable partition.

• If the partition of V1 is {{2}, {5}, {27}, {33, }, {39, 45, 46}}, there are

4 equitable partition.

• If the partition of V1 is {{2}, {5}, {27}, {33}, {39}, {45, 46}}, there are

2 equitable partitions.

• If V1 is partitioned into 7 cells of size 1, then the partition of T is

actually a union of 7 partitions of the sets Wx. Since each member of

Wx has exactly one neighbor in Wy, the partition of W1 determines

the partition of each Wy, but for all but the two trivial partitions of

W1, the resulting partition is not equitable. Therefore, there are 2

partitions of this type (one of them is the discrete partition).

The equitable partitions in two different cases need not be in different orbits

of the automorphism group. In total, there are only 87 equitable partitions

with a cell of size 1 (including the discrete partition, which is not listed in

the table).

Partitions with a smallest cell of size 2 There are two possibilities

for a set of size 2: Edge and non-edge. If the partition contains a cell {x, y}
of non-neighbors, these non-neighbors have exactly one common neighbor

(µ = 1), and this common neighbor must be in a cell of its own, reducing

to the previous case.

Therefore, the only case we need to consider is having a cell of two

neighbors {1, 2} (G = Aut(HoSi) is edge-transitive).
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Again, each cell in the partition of V1∪V2 has the same size intersection

with V1 and V2, leaving us with exactly 877 cases to consider (9 cases up to

G).

The selected partition of V1 ∪ V2 has even stronger limitations on the

partition of the other 36 vertices, leaving us with a short brute force search

in all those cases.

There is one hard case where V1∪V2 is unpartitioned, yielding 4 equitable

partitions and 8 simpler cases giving us 9 equitable partitions, for a total

of 12 equitable partitions of this type.

Partitions with a smallest cell of size 3 If the smallest cell in the

partition is of size 3, then this must be an independent set. Every pair of

those vertices has a common neighbor. This cannot be a common neighbor

of all three vertices, since such a vertex would have to be in a cell by itself.

Therefore, if we have a cell {a, b, c}, then {x = a · b, y = b · c, z = c · a}
is also a cell of the partition, and axbycz is a hexagon in HoSi. Up to G,

there is only one hexagon in HoSi (computer result), so we have only one

case to consider.

We get a third set of common neighbors (of the long diagonals of the

hexagon): {r, s, t}.
{r, s, t} have a common neighbor, thus killing this case.

Partitions with a smallest cell of size 4 If the partition has a cell of

size 4, the induced subgraph on the four vertices is of valency 1 at most

(HoSi has no quadrangles).

Valency 1 case:

If the edges are {ab} and {cd}, then there are four more vertices: x = a·c,
y = a · d, z = b · c and w = b · d. These four must be distinct, and there

can be no edge between them. But now, x ·w and y · z must be in a cell by

themselves in the partition, so this case is impossible.

Valency 0 case:

There are six common neighbors of two of the four vertices, and again

there cannot be a common neighbor of three or more of the vertices.
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Up to G, there are 5 sets of four independent vertices, only three of

them have six distinct common neighbors, so these are the three cases we

need to consider.

The set of 6 common neighbors has to be a cell of the partition.

In two of the three cases, there are 2, 3 more common neighbors of two

elements of the set of 6 common neighbors (in addition to the four vertices in

the starting cell). Those can’t be in the same cell of the equitable partition

as the other vertices, so we have a cell smaller than 4, contradicting our

condition.

Therefore, only one case remains. Up toG, the set of size 4 is {1, 3, 6, 26},
and the six common neighbors are {2, 28, 33, 35, 46, 48}.

These two sets generate an equitable partition with sizes 4, 6, 16, 24.

The set of 24 can’t be split (computer search). The set of size 16 can

be split into two sets of size 8 (in one way, up to G).

We get 2 equitable partitions of this type.

Partitions with a smallest cell of size 5 A set of size 5 induces a

Pentagon (only one, up to G) or an independent set of size 5 (10 up to G).

In the case of the Pentagon, Each of the five vertices has five more

distinct neighbors, with each set of the partition intersecting each set of

five neighbors with the same size.

This is enough to limit the search space, and accounts for 30 of the

vertices. The remaining 20 are few enough for a brute force search.

There are 39 such equitable partitions.

The case of independent set:

For eight of the 10 independent sets, the equitable closure contains a

cell of size 1, so they do not give an equitable partitions with minimal cell

of size 5.

In the two remaining cases, the 45 vertices are divided into 10, 15, and

20 vertices according to the number of neighbors in the independent set of

size 5. Finding equitable partitions of the parts of sizes 10 and 15 is easy.

There are 15 such cases, and in each of them there are enough limitations

on the set of 20 vertices to make the search of all partitions feasible.
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There are four equitable partitions with a smallest cell of size of 5 where

the cell of size 5 is an independent set.

There is no intersection between the two types.

Partitions with a smallest cell of size 6 An induced Hexagon has

exactly three vertices with two neighbors in the hexagon, thus no required

equitable partition.

There are four induced subgraphs of valency 1, and 18 independent sets

of size 6. The equitable closure of each of those 22 subsets results in smaller

cells, so there are no equitable partitions with smallest cell of size 6.

Partitions with a smallest cell of size 7 There is one induced Hep-

tagon (up to G) and 31 independent sets of size 7.

The equitable closure of all but one independent set of size 7 includes a

cell of smaller size.

Stabilization of this independent set gives an equitable partition with

sizes 7, 7, 8, 28. The cell of size 28 can’t be split. This partition is a

refinement of an equitable partition with sizes 8, 14, 28.

Partitions with a smallest cell of size 8 There are two induced oc-

tagons, 10 induced subgraphs of valency 1 and 36 independent sets of size

8.

The equitable closure of all but one independent set of size 8 contains a

cell of smaller size.

This independent set of size 8 has 14 non-neighbors and 28 neighbors of

valency 2. This gives us an equitable partition.

The only numerically possible refinement of this partition (with min-

imum size 8) is done by splitting the set of size 28 in half. None of the

splittings give an equitable partition (computer search).

Partitions with a smallest cell of size 9 These can be ruled out by

considering the possible sizes of cells.
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The size of a cell cannot be a prime number p larger than 7 (or a multiple

of such a prime number). If there is a cell of such size, there must be an

edge going between this cell and a cell with a size not divisible by p. In

such a case, the equation aijni = ajinj has no solutions for ni, nj ≤ 7.

This leaves only two possibilities with five cells:

(9, 9, 9, 9, 14): There must be edges going out of the cell of size 14, but

then we have 14a = 9b, which is impossible for integer a, b, a > 0, a, b ≤ 7.

(9, 9, 10, 10, 12): There must be edges between 9 and 12, giving 4 · 9 =

3 ·12, and between 12 and 10, giving 6 ·10 = 5 ·12, but the sum of valencies

of 12 must be 7, and it is already 8.

There are six possibilities with four cells:

(9, 9, 12, 20): There must be edges between 9 and 12, giving 4 ·9 = 3 ·12,

and between 12 and 20, giving 3 · 20 = 5 · 12, but the sum of valencies of

12 must be 7, and it is already 8.

The five other cases can be easily disqualified with similar arguments:

(15, 14, 12, 9), (16, 15, 10, 9), (16, 16, 9, 9), (18, 14, 9, 9) and (21, 10, 10, 9).

The four cases with three cells are disqualified with the same arguments:

(21, 20, 9), (25, 16, 9), (27, 14, 9) and (32, 9, 9).

Alternatively: There are three induced cycles of length 9, and 33 inde-

pendent sets of size 9. Equitable closure of all of them includes a cell of

smaller size, so there are no equitable partitions of smallest cell of size 9.

3.2.4.3 Partitions with a small number of cells

If the smallest cell of the partition has a size of at least 10, then there are

five cells in the partition at most.

In the case of five cells, all cells have to be of size 10.

For finding possible adjacency matrices, and sizes of cells of potential

equitable partitions, we use the following reduced brute force search:

For k number of cells (k ∈ {2, 3, 4}), we first partition 50 into k integers,

each being at least 10: 50 = n1 + · · ·+ nk.

For every possible solution, we find all possible adjacency matrices for

an equitable partition. An adjacency matrix has only natural numbers as
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entries, and the sum of each row is 7 (valency of the Hoffman-Singleton

graph).

Denote elements of the adjacency matrix aij.

The following must hold for all i, j:

• niaii must be even.

• aii must be less than:

◦ 3 if ni < 10;

◦ 4 if ni < 19;

◦ 5 if ni < 30;

◦ 6 if ni < 40;

(those upper limits for aii are the valencies of the cages of girth 5).

• If ni > 15 then aii > 0, since the largest independent set in HoSi is of

size 15 (computer result).

• aijni = ajinj.

In addition, we recall that the characteristic polynomial of the adjacency

matrix of an equitable partition divides the characteristic polynomial of

HoSi.

Partitions with 2 sets With the above constraints, we get five feasible

sets:

10, 40:

(
3 4

1 6

)
A regular subgraph on 10 vertices with valency 3 is a Petersen graph.

There is one orbit of Petersen graphs in HoSi, and it is obvious in the

Robertson model that it is indeed an equitable partition, so there is exactly

one such equitable partition.

15, 35:

(
0 7

3 4

)
There is one independent set of size 15 (up to G).
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20, 30:

(
1 6

4 3

)
Brute force search for the set of size 30 is feasible.

There is only one way (up to G) to select a vertex v and three neighbors

v1, v2, v3. There are then 20 ways to select two neighbors for each of the

three neighbors: v11, v12, v21, v22, v31, v32.

Now there are 24 vertices left which are not adjacent to any of v, v1, v2, v3,

and we need to select 20 of them.

There is one such equitable partition.

20, 30:

(
4 3

2 5

)
A brute force search is feasible: Start with any vertex and any four

neighbors (only one selection up to action of G). For each of the four,

select three more vertices (
(
6
3

)4
options). Now select three more vertices

out of the remaining 33.

There are two such equitable partitions.

25, 25:

(
2 5

5 2

)
A cell in such a partition is a union of induced cycles. Furthermore,

cycles that are in the same cell cannot have edges between them.

There are induced cycles of sizes 5, 6, 7, 8, 9, 10, 12, 13, 16, 18.

There are 19 integer partitions of 25 to these sizes.

Except for the integer partition of 25 = 5 + 5 + 5 + 5 + 5, there are no

induced cycles of the required sizes without connecting edges between them.

For the integer partition 25 = 5 + 5 + 5 + 5 + 5, the only equitable partition

is the obvious one in the Robertson model (pentagons and pentagrams).

Partitions with three cells There are four feasible matrices:

20, 15, 15:

1 3 3

4 0 3

4 3 0


There is only one option for one independent set of size 15, and then

only one option for a second set.
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25, 15, 10:

2 3 2

5 2 0

5 0 2


This is a refinement of a partition of the type 25, 25. There is one such

partition, and one way to divide it into 15 and 10 with the desired valencies.

20, 20, 10:

4 2 1

2 4 1

2 2 3


The cell of size 10 must be a Petersen graph. This leaves a feasible brute

force search for the other two cells.

The only partition of this type is the obvious one in the Robertson

model.

30, 10, 10:

5 1 1

3 3 1

3 1 3


The two cells of size 10 must be Petersen graphs.

The only partition of this type is the obvious one in the Robertson

model.

Partitions with four cells There are two feasible matrices:

15, 15, 10, 10:


2 3 0 2

3 2 2 0

0 3 2 2

3 0 2 2


There are 88200 induced decagons in HoSi, in two orbits. No pair of

decagons has the necessary valencies.

20, 10, 10, 10:


4 1 1 1

2 3 1 1

2 1 3 1

2 1 1 3


There is only one way to select two disjoint Petersen graphs. There are

six ways to select the third disjoint Petersen graph. This results in three

equitable partitions (up to G).

Partitions with five cells The only feasible matrix is
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
3 1 1 1 1

1 3 1 1 1

1 1 3 1 1

1 1 1 3 1

1 1 1 1 3


There are two ways to select five mutually disjoint Petersen graphs inside

HoSi. Both are non-automorphic with automorphism group of order 5.

3.2.5 Gewirtz graph

The previous method does not help in reducing the search space to a man-

ageable size, since much of the reduction in size resulted from the fact that

µ = 1.

We can find all equitable partitions that are invariant under the action

of some non-identity automorphism. Such an equitable partition will be

invariant under the action of an automorphism of prime order. There are

seven of these up to conjugacy, with 32, 12, 31, 20, 35, 28, and 8 orbits.

They give 476, 53, 488, 57, 152, 134, and 35 equitable partitions (up to the

action of the automorphism group of the Gewirtz graph).

Altogether, there are 755 non-rigid equitable partitions, 153 of which

are automorphic. The distribution by size of partitions (number of cells) is

available in Table 13.

This leaves the question of equitable partitions that have no non-identity

stabilizing automorphism (rigid equitable partitions) open. In fact, we don’t

have any examples of such partitions for any of the graphs, except for the

discrete partition.

3.2.6 Mesner graph

For this graph, we enumerated all automorphic equitable partitions. This is

straightforward in GAP. There are 236 automorphic EPs (up to the action

of the automorphism group of the Mesner graph). Their distribution by

size is available in Table 14.
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3.2.7 NL2(10)

For this graph, we enumerated all automorphic equitable partitions. GAP

cannot calculate all subgroups of the automorphism group of NL2(10) di-

rectly, but this group appears in the atlas of finite simple groups ([84])

with all its maximal subgroups. All those maximal subgroups are small

enough for GAP to calculate their subgroups, thus we can get a list of all

subgroups. There are 607 automorphic EPs (up to the action of the au-

tomorphism group of NL2(10)). Their distribution by size is available in

Table 15.

3.3 Understanding some EPs

During our research, we used the discovered EPs to construct many models

of the known tfSRGs. We now present a few of these models.

3.3.1 Some models of the Hoffman-Singleton graph

We start the first model presentation with a classical simple observation:

Proposition 12. There are six distinct, pairwise isomorphic, 1-factorizations

of the graph K6. Each of these has automorphism group S5, acting 3-

transitively on six points.

Let F be a representative 1-factorization of K6 with vertex set [0, 5],

namely

F ={{{0, 1}, {2, 4}, {3, 5}}, {{0, 2}, {1, 5}, {3, 4}}, {{0, 3}, {1, 2}, {4, 5}},

{{0, 4}, {1, 3}, {2, 5}}, {{0, 5}, {1, 4}, {2, 3}}}.

It is convenient to regard the considered copy of K6 as a subgraph of K7

with isolated vertex 6.

Let Ω1 = {∅}, Ω2 = [0, 6] and Ω3 = FS7 , where FS7 is the orbit of F
under action of S7 = Aut(K7). Denote Ω = Ω1 ∪ Ω2 ∪ Ω3. Clearly, the

symmetric group S7 = S([0, 6]) acts naturally on Ω with orbits Ω1, Ω2, Ω3.
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Thus, we may consider the coherent configuration H = (Ω, 2-orb(S7,Ω)).

Using COCO, we obtain that:

a) H is a rank 15 configuration with three fibers of size 1, 7, 42. Its type is1 1 1

1 2 2

1 2 4

 with valencies

1 7 42

1 (1, 6) (36, 3)

1 (6, 1) (1, 30, 5, 6)

.

b) Merging of the relations 1, 3, 7, 10, 14 of respective valencies 7, 1, 6, 1, 6

provides a copy of the graph HoSi. �

In (a) above, the labeling of relations is lexicographic: first down columns,

then across rows. For example, the second column in the matrix of valen-

cies indicates that the relations R3, R4, R5, R6, R7 have respective valencies

7, 1, 6, 6, 1.

This model corresponds to the equitable partition into three cells of sizes

1,7, and 42, which is called the vertex partition of HoSi.

For the second model, consider the group D = D5 ×AGL(1, 5) of order

200 acting intransitively on a set of cardinality 50. It defines a coher-

ent configuration XD of rank 29 with three fibers of size 5, 25, 20. Two

Schurian fusions of XD correspond to the rank 3 Hoffman-Singleton associ-

ation scheme. In fact, the configuration XD corresponds to the stabilizer of

an arbitrary pentagon in HoSi. The automorphic partition of this stabilizer

is the pentagon metric partition. This equitable partition is evident in the

Robertson model of HoSi.

For the third model, we utilize the stabilizer G in Aut(HoSi) of a Pe-

tersen subgraph P in HoSi. There are 525 copies of P in HoSi, all belonging

to the same orbit of Aut(HoSi). We obtain that G is a group of order 480.

The corresponding coherent configuration XG is of rank 16 with two fibers

of size 40 and 10. Configuration XG has a unique rank 3 fusion, which is

the HoSi association scheme. This model corresponds to the only equitable

partition with two cells of sizes 10 and 40. The induced graph on the cell

of size 10 is a Petersen graph, while the induced graph on the cell of 40

vertices is the (6, 5)-cage.
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3.3.2 Some models of the Gewirtz graph

Let Γ be the Gewirtz graph with parameters (56, 10, 0, 2). G = Aut(Γ) is

a transitive group of order 80640. The stabilizer of a vertex v in G, Gv

has order 80640
56

= 1440. In fact, Gv is isomorphic (as an abstract group)

to Aut(S6). Gv acts faithfully and 2-transitively on the set of 10 neighbors

of v. In the Sims model of Γ, we see the action of S6 on this set of 10

neighbors.

3.3.2.1 D5 automorphic partition

Let us now consider a copy of the dihedral group D5 of order 10 in Aut(S6).

Up to conjugacy, there are two subgroups of Aut(S6) isomorphic to D5. We

are interested in the one that is not a subgroup of S6.

Using GAP, we selected a copy of D5 (which is not a subgroup of S6)

and investigated its automorphic partition. This partition has nine cells of

sizes 1, 5 and 10.

3.3.2.2 Pentagon partition

We start from any pentagon P in Γ (all are in the same orbit under action

of G).

All other vertices can be classified by the number of neighbors they have

in P . There are 16 vertices with no neighbors in P , 30 vertices with one

neighbor, and five vertices with two neighbors. We label by Q the set of

five vertices with two neighbors in P . We then count how many neighbors

in Q vertices of the sets of sizes 16 and 30 have. We note that they are split

further into cells of sizes 1, 15, 10 and 20.

What we described are two steps of the stabcol algorithm, so what

we get is a candidate for the equitable closure of P . It turns out that this

candidate is indeed an equitable partition, thus it is the equitable closure of

P . The collapsed matrix of this partition with cells of sizes 1,10,5,5,15,20
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is: 

0 10 0 0 0 0

1 0 1 1 3 4

0 2 2 2 0 4

0 2 2 0 6 0

0 2 0 2 2 4

0 2 1 0 3 4


.

This equitable partition is not automorphic, as its stabilizer is D5 which

has 9 orbits.

We wish to describe the whole graph Γ in a self-contained form, relying

only on P . For this, we need to consider a modification of the Sims model

such that the whole group Gv of order 1440 is shown, rather than only half

of it.

We start by introducing a suitable description of Aut(S6).

3.3.2.3 Tutte-Coxeter graph

The Tutte-Coxeter graph or the Tutte eight-cage is a bipartite cubic graph

on 30 vertices. It is the unique (3, 8)-cage.

An old model of this graph, ∆, attributed to Sylvester, has one side of

the graph (V1) comprised of the 15 edges of the complete graph, K6, while

the 15 perfect matchings (1-factors) of K6 comprise the other side (V2).

Adjacency is defined naturally by inclusion.

The automorphism group of this graph, H = Aut(∆) of order 1440 is

isomorphic to S6 o Z2 = Aut(S6).

In our presentation, we will denote the vertices of K6 by the integers

[0, 5], and edges of K6 simply by two digits, so one edge of Tutte-Coxeter

graph is {01, {01, 23, 45}}.

3.3.2.4 Another model of Sims-Gewirtz graph

O1 = {v}.
There are ten independent sets of size 12 in ∆ with six vertices in V1

and six vertices in V2. The six vertices in V1 in each set are the six edges of
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two triangles in K6 that do not share a vertex. The six vertices in V2 are

the six matchings where the edges have a vertex in each triangle. The set

of these ten independent sets is denoted by O2. An example element of O2:

{01, 02, 12, 34, 35, 45, {03, 14, 25}, {03, 15, 24}, {04, 13, 25}, {04, 15, 23},
{05, 13, 24}, {05, 14, 23}}. Clearly, H acts transitively on O2.

There are 45 quadrangles in K6. For each of them, there are four 1-

factors which do not share an edge with the quadrangle, and include ex-

actly one of its diagonals. Thus we have 45 independent sets of size 8

in ∆, having four vertices in each side. O3 is the set of those 45 in-

dependent sets. H acts transitively on O3. An example element of O3:

{01, 12, 23, 03, {02, 14, 35}, {02, 15, 34}, {13, 04, 25}, {13, 05, 24}}.

Let us define a graph Γ. The set of vertices V = O1 ∪ O2 ∪ O3. v is

adjacent to all vertices of O2. A vertex of O3 is adjacent to a vertex of O2

or O3 if they are disjoint. Clearly, H = Aut(∆) (in its action on O2 and

O3) is a subgroup of Aut(Γ)v.

It is easy, but tedious, to check that Γ is a strongly regular graph with

parameters (56, 10, 0, 2), and by the uniqueness of the Sims-Gewirtz graph,

it is isomorphic to it.

3.3.2.5 Pentagon partition (revisited)

Let us select a special pentagon inside O3, one in which a vertex of K6 ap-

pears five times: P = {(0, 1, 2, 3), (0, 2, 4, 5), (0, 1, 3, 4), (0, 2, 5, 3), (0, 4, 1, 5)}.
The stabilizer of this pentagon in S6 is H0 = 〈(1, 2, 4, 3, 5)〉.

There are 15 vertices in O3 that have no neighbors in P . Representatives

are (0, 2, 3, 4), (0, 1, 5, 2), (0, 1, 4, 3).

There are 20 vertices that have one neighbor in P . These are represented

by (0, 1, 3, 2), (0, 1, 5, 3), (1, 2, 4, 3), (1, 2, 5, 4).

There are five vertices that have two neighbors in P : (1, 2, 3, 4).

O2 is compatible with this partition of O3, so we get a partition of Γ with
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cells of sizes 1, 10, 5, 5, 15, 20, and the desired collapsed adjacency matrix:

0 10 0 0 0 0

1 0 1 1 3 4

0 2 2 2 0 4

0 2 2 0 6 0

0 2 0 2 2 4

0 2 1 0 3 4


.

On one hand, this revisited model is slightly sophisticated. However, its

advantage is that the entire Gewirtz graph Γ is fully described in terms of

auxiliary structure with a small symmetry group of order 10.

3.3.3 Quadrangle EP of NL2(10)

Proposition 13. Let Γ be an SRG with parameters (100, 22, 0, 6). Let τ be

a metric decomposition with respect to a prescribed quadrangle Q inside of Γ.

Then τ is EP with four cells of sizes 24, 64, 8, and 4, and a collapsed adja-

cency matrix (with respect to this ordering of cells), B =


2 16 4 0

6 14 1 1

12 8 0 2

0 16 4 2

.

Proof. Let V3 be a quadrangle in Γ.

Every other vertex of Γ has 0, 1, or 2 neighbors in V3. Let Vi be the set

of vertices having i neighbors in V3, for i = 0, 1, 2.

For i, j ∈ [0, 3], let aij be the number of neighbors that a vertex of Vi

has in Vj. We need to show that the aij’s exist, that is, that they do not

depend on the selection of the vertex in Vi.

By definition, a33 = 2, a23 = 2, a13 = 1, a03 = a30 = 0.

Two adjacent vertices in V3 have no common neighbors. Two non-

adjacent vertices have six common neighbors, two of which are in V3, so the

other four are in V2. There are two pairs of non-adjacent vertices in V3, so

|V2| = 8, a32 = 4.

We accounted for six neighbors of each vertex in V3, so each has 16

neighbors in V1, so |V1| = 64, a31 = 16.
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There remain 24 vertices, so |V0| = 24.

From non-edge equitable partition of Γ (Figure 4 on page 20), we learn

that there is no subgraph isomorphic to K3,3 in Γ (because common non-

neighbors of two non-neighbors v, u only have two neighbors in common

with v, u). Therefore, there are no edges inside V2, since an edge creates a

triangle or a K3,3. Thus, we get a22 = 0.

Let us now split the cell of size 6 into a cell B1 of two vertices from V3

and a cell B2 of four vertices from V2. This splits the cell of size 60 into: a

1 1

24

16 16

4 3224
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1
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2
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68212

62

Figure 6: A split of the non-edge decomposition of NL2(10)

cell C2 of size 4 of vertices that have two neighbors in B1, a cell C0 = V0 of

size 24 of vertices that have no neighbors in B1, and a cell C1 of 32 vertices

that have one neighbor in B1. The intersection diagram of the resulting

equitable partition is shown in Figure 6.

C1 is a subset of V1, and each of its elements has exactly one neighbor

in B2. Thus, each vertex of V1 has no neighbors in the four vertices of V2

which have a common neighbor with it (since that closes a triangle), and

has exactly one neighbor in the other four vertices of V2, so a12 = 1.

If we construct the non-edge partition with the non-edge B1 instead of

the original, then the cell of size 60 in this new partition consists of the 32

vertices from the two cells of size 16 in the original partition, together with
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the 24 vertices from C0 and the four vertices from B2. Each vertex of V2 has

12 neighbors inside this cell, and they all have to be in C0. And since each

such vertex has 20 neighbors in C0 and C1, it has exactly eight neighbors

in C1, thus a21 = 8.

Each vertex has 22 neighbors, thus a20 exists and a20 = 12.

Each vertex of C0 has two neighbors in B2 (since it has two neighbors

in B1 and B2, but none in B1), and four in each of the cells of size 16, thus

it has 12− 2− 4− 4 = 2 neighbors inside C0 = V0, so a00 = 2.

Each vertex of C0 has four neighbors in each cell of size 16, thus it has

exactly eight neighbors in C1 (since C1 is the two cells of size 16 in the

non-edge partition from B1). Therefore a01 = 16, and since each vertex has

22 neighbors, a02 = 4.

There are no edges between C1 and C2 (since that would close a triangle),

thus each vertex of C2 has 12 neighbors in C0. Each vertex in C0 has two

neighbors in B2, so it also has exactly two neighbors in C2, since a02 = 4.

Since the 32 vertices of C1 are two cells of 16 in non-edge partition, each

vertex in C1 has exactly six neighbors in C1, and therefore also six neighbors

in C0, so a10 = 6.

Finally, since the valency of vertices in V1 is 22, a11 = 14, and indeed

we have an equitable partition with collapsed adjacency matrix:
2 16 4 0

6 14 1 1

12 8 0 2

0 16 4 2





Chapter 4

Schur rings over A5, AGL1(8)

and Z11oZ5

Theoretical investigation of S-rings over Abelian groups seems to be ap-

proaching its climax, see for example [27]. Less is known about non-Abelian

groups, though some progress is already visible ([71]).

All S-rings over groups of order up to 47 were classified with the help of a

computer. Thus, we decided to try to extend the computerized classification

for larger non-Abelian groups.

The groups we chose are A5 of order 60, AGL1(8) of order 56 and Z11oZ5

of order 55. The group A5 is especially interesting, being the smallest non-

cyclic simple group.

We managed to completely enumerate all S-rings over the groups A5 and

AGL1(8). For Z11oZ5, we had to settle for an enumeration of the symmetric

S-rings. We also have preliminary results for the enumeration of all S-rings

over Z11oZ5, but that calculation has not been repeated yet.

The first stage of the search for all S-rings consists of searching for “good

sets”, that is, sets of relations whose union is a relation of a fusion scheme

(for details, see Section 3 in [29]). For a group with k elements of order 2,

and 2h elements of order larger than 2, the number of candidates for good

sets is 2h+k + 3h (the first summand is for symmetric good sets, and the

second is for antisymmetric good sets).

64
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For A5 we get 237 +322, for AGL1(8) we get 231 +324, and for Z11oZ5 we

get 227 + 327. For groups of this size, the search for good sets is the most

time-consuming step of the algorithm, so we expect the search for AGL1(8)

to take about twice as long as for A5, while the search for (specifically,

antisymmetric) good sets over Z11oZ5 to take about 50 times longer than

the search over A5. With the work for A5 taking about one month of CPU

time, this explains why the search for antisymmetric good sets over Z11oZ5

is the most problematic.

Please note that the search for good sets is fully parallelizable, so instead

of one CPU for 4 years, it can be completed by (e.g.) a 4 core system in

one year or a thousand CPU cores in a day or two.

4.1 S-rings over A5

4.1.1 Computer results

All S-rings over the group A5 were enumerated with the aid of COCO-II;

the job took about 1 month of computer time on a 3GHz CPU.

A summary of the results: there are 2848 S-rings in 163 orbits under

the action of the group S5 = AAut(A5). Among them, 505 S-rings (in 19

orbits) are non-Schurian. A complete list of orbit representatives, along

with some information about each S-ring, is presented in [86]. Here, the

full group ring C[A5] has number 0, and the rank 2 S-ring has number 162.

From now on, we refer to the enumeration of the orbits in this catalogue.

The results we obtained appear as a massive list of computer-generated

data; we wish to transform this into a form that is more suitable for a

human being. Schurian S-rings may, in principle, be explained in group

theoretical terms. Non-Schurian S-rings are a subject of particular interest

in AGT. Each such object requires special attention and analysis.

The general distribution of S-rings with respect to rank is provided in Ta-

ble 18. Eight of the 19 orbits of non-Schurian S-rings are non-commutative

(with ranks between 9 and 14). Up to isomorphism, there are nine differ-

ent automorphism groups of non-Schurian S-rings with orders from 720 to
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Rank 60 33 32 22 20 19 18 17 16 15 14 13
Total 1 1 1 1 1 2 3 2 1 1 2 7

Non-Schurian 0 0 0 0 0 0 0 0 0 0 1 1

Rank 12 11 10 9 8 7 6 5 4 3 2
Total 5 10 11 17 15 18 21 19 16 7 1

Non-Schurian 0 1 4 3 3 3 2 0 1 0 0

Table 18: Distribution of S-rings over A5 with respect to rank

234 · 3 · 5. Altogether, among the automorphism groups of the 163 orbits of

S-rings, there are 139 different groups (including the trivial cases of A5 and

S60); too many to pay special attention to each group.

For groups of relatively small orders, GAP allows us to get one or a few

“names” of abstract groups in clear algebraic terms. In addition, in each

case we need to understand the (transitive) permutation representation of

each group.

It was convenient for us to classify all groups into a few classes according

to their order. Defining artificial borders, we distinguish between:

• “small” groups, those of order up to 7680; all of them were identified

with the aid of GAP;

• “large” groups, those of order 14400 up to one million. Their or-

ders are: 14400, 14580, 24360, 29160, 46080, 61440, 122880, 230400,

466560, 933120;

• “very large” groups, of order between 1875000 and 60!.

The list of orders of small groups is presented in Table 19. Identification of

the structure of large and very large groups, in general, cannot be done by

using GAP in an automatic fashion. Instead, we apply special tricks.

For example, we discuss below groups that may be described as wreath

products of two groups of a smaller degree: G = G1 o G2, so that |G| =

|G1| · |G2|m, where m is the degree of G1 (we refer to [47] for definition and

notation). The following simple trick was programmed in GAP:
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Nr. |Aut| Structure Nr. |Aut| Structure
0 60 A5 20 360 C3 × S5

1 120 S5 22 360 A5 × S3

2 120 C2 × A5 30 480 (C2 × C2 × A5) : C2

3 180 GL(2, 4) 43 600 D10 × A5

6 240 C2 × S5 60 720 S5 × S3

9 240 C2 × C2 × A5 67, 95, 98 720 A5 × A4

10 240 A5 : C4 107 1200 (C5 × A5) : C4

12 300 C5 × A5 42, 112, 139 1320 PSL(2, 11) : C2

14 360 GL(2, 4) : C2 109 1440 (A5 × A4) : C2

Nr. |Aut| Structure
4, 15, 21, 35, 47, 115 1920 C2 × ((C2 × C2 × C2 × C2) : A5)

5 3840 ((C2 × C2 × C2 × C2 × C2) : A5) : C2

18, 51, 77 3840 C2 × (((C2 × C2 × C2 × C2) : A5) : C2)
36, 45, 52, 80 3840 ((C2 × C2 × C2 × C2) : A5) : C4

137 7200 (A5 × A5) : C2

33, 44 7680 (C2.(((C2 × C2 × C2 × C2) : A5) : C2) =
((C2 × C2 × C2 × C2 × C2) : A5).C2) : C2

Table 19: List of orders of small groups over A5

• We start from the order |G| and represent it in the form |G| = |G1| ·
|G2|m, where m · n = 60.

• In addition, we require that m divides |G1|, and n divides |G2|.

• If these conditions are fulfilled, then we examine G in more detail,

looking for transitive groups G1, G2 with orders |G1|, |G2| and degrees

m, n.

In fact, there are 108 very large groups; 106 of them pass the numerical

test, but only 79 of them are actually wreath decomposable.

Example 3. S-ring #19 has rank 13 with |G| = 29859840 and valencies

48, 112.

• |G| = 120 · 125, m = 5, n = 12.

• G1 is S5 acting naturally on 5 points (rank 2). |G2| has to be a group

of order 12 acting regularly; for this example, we take G2 = A4.
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• We conclude that G1 oG2 has the required order, rank and valencies.

• We construct G1 oG2 using GAP, and check that it and G are similar

permutation groups.

• Thus G = S5 o A4.

Example 4. S-ring #133 has rank 5, |G| = 137594142720000000 and va-

lencies 1, 50, 4, 4, 1. Here, acting in a similar fashion, we recognize that

|G| = 720 · 2406 and identify G as S6 o (S5 × S2), where S6 acts naturally

on 6 points, while S5 × S2 acts transitively on 10 points with rank 4 and

valencies 1, 1, 4, 4.

Finally, there remain 29 very large groups which are not wreath de-

composable. We expect to be able to explain these groups with the aid of

more sophisticated operations over permutation groups, which are some-

times called generalized wreath products in the sense of [49].

Recall that an S-ring A is called primitive if all of the basic graphs of

A are connected. In particular, a Schurian S-ring is primitive if and only

if its automorphism group is a primitive permutation group. The primitive

S-rings over A5 were classified purely theoretically by M. Muzychuk ([67]):

• There are only two (non-trivial) primitive S-rings of ranks 5 and 4

over A5, with valencies 1, 12, 12, 15, 20 and 1, 15, 20, 24 respectively.

• Both appear as centralizer algebras of the holomorph of A5 and its

subgroup of index 2.

This result is now confirmed with the aid of a computer, as one of the

consequences of the project presented here.

4.1.2 Rational S-rings

There are 54 orbits of rational S-rings over the group A5, and 49 of them

have large groups. Those with large groups are in a sense less interesting,

because they can be described via suitable decompositions into association

schemes with a smaller (than 60) number of points.
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# Rank Valencies |Aut| Structure
51 9 1, 16, 8, 8, 16, 4, 2, 1, 4 3840 C2×(((C2×C2×C2×C2) :A5) :C2)

60 9 1, 12, 6, 12, 6, 2, 12, 6, 3 720 S5 × S3

77 8 1, 16, 16, 16, 4, 2, 4, 1 3840 C2×(((C2×C2×C2×C2) :A5) :C2)

107 6 1, 20, 5, 20, 10, 4 1200 (C5 × A5) : C4

109 6 1, 24, 12, 8, 12, 3 1440 (A5 × A4) : C2

Table 20: Rational S-rings over A5 having a small automorphism group

The S-rings with small groups are listed in Table 20. Note that S-rings

#51 and #77 are non-Schurian; they will be considered in more detail in

Section 4.1.3. Each of the remaining 3 S-rings needs to be investigated

separately using suitable ad hoc tools. The simplest pattern is presented

below.

Example 5. S-ring #60. Our goal was to explain the significant properties

of this S-ring. For this purpose, we used the computer package COCO. It is

possible, however, to perform all the necessary calculations without the use

of a computer.

Let us start from the direct sum G = S5+S3 (which has abstract structure

S5×S3), acting intransitively on the set [0, 7] with two orbits [0, 4] and [5, 7].

Clearly, |G| = 720. We wish to consider the transitive faithful action of G

on the cosets of a suitable subgroup K of order 12. As an abstract group,

K is isomorphic to the dihedral group D6 of order 12.

We consider the combinatorial object P = {(0, 5), (1, 6), (2, 7)}. The

stabilizer Aut(P ) of P in G has the structure S3 + S2, and is isomorphic

(as an abstract group) to D6. Two additional essential facts are that D6

does not contain a non-trivial normal subgroup of G, and that there exists

a subgroup A5 ≤ G which has a trivial intersection with D6.

Thus, we may indeed consider the transitive action of G on the set Ω =

{P g|g ∈ G} of all images of P , and its centralizer algebra V = V (G,Ω).

Naive combinatorial counting shows that |Ω| =
(
5
2

)
· 3! = 60. Using the

orbit counting lemma (also known as the CFB lemma, see [47]), we confirm

that rank(V ) = 9 and V is a symmetric association scheme. We also

calculate the valencies of the classes of V , see Table 20. This provides a
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reasonably elementary description of S-ring #60. The fact that it is rational

was confirmed with the aid of GAP. It might be interesting to try to get an

independent computer-free justification of this fact (avoiding any specific

calculations of the spectrum of V ).

4.1.3 General Outline of Non-Schurian S-rings

The information about all 19 non-Schurian S-rings is gathered together in

Table 21. The content of the first three columns is clear, and the remaining

two columns are explained below. We use a few ad hoc approaches in order

to explain (or better, to interpret, see Section 1.1 or [52]) the computer

results we obtained.

An essential initial ingredient of the desired explanation is the concept

of a root group. Namely, we have a set R of four root groups of orders

720, 1320, 1920, and 7680, such that each of the 19 (non-Schurian) S-

rings appears as a subring (merging, in other terminology) of a suitable

corresponding transitivity module.

Note that S-rings #49 and #91 originate in this way from two roots.

In particular, of the 19 S-rings, nine appear as so-called algebraic merg-

ings. Below we discuss each of the four roots separately.

4.1.3.1 Root 1

The group R1 = PGL(2, 11) of rank 10 and order 1320, non-commutative

S-ring #42 with subdegrees 15, 115. This is a particular case of a general

construction, which was described by R. Mathon ([60]) as a pseudocyclic

association scheme in the sense of [15]. In general, these schemes allow

proper algebraic automorphisms. In our case, q = 11 and d = 2, so we

obtain such a scheme on q2−1
d

points, with two algebraic mergings of rank

4 and 6; the first one is generated by an antipodal distance regular graph

of diameter 3 and valency 11, see also [59], [37]. This explains #112 and

#139.
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# rank |Aut| root extra features
15 14 1920 1920 algebraic
21 13 1920 1920 algebraic
35 11 1920 1920 algebraic
39 10 3932160 1920 elementary merging #36
44 10 7680 7680 elementary merging #32
45 10 3840 1920 elementary merging #35
47 10 1920 1920 elementary merging #34
49 9 128849018880 1920, wreath product, elementary merging

7680 #38, #43, #44, #46, #47
51 9 3840 1920 algebraic
52 9 3840 1920 algebraic
69 8 7864320 1920 elementary merging #49
77 8 3840 1920 elementary merging #50
80 8 3840 1920 elementary merging #51
91 7 257698037760 1920, wreath product, elementary merging

7680 #68, #71, #76, #79
95 7 720 720 algebraic, elementary merging #66
98 7 720 720 algebraic, elementary merging #66
112 6 1320 1320 algebraic
115 6 1920 1920
139 4 1320 1320 algebraic

Table 21: Information about non-Schurian S-rings over A5

4.1.3.2 Root 2

The group R2 of order 720 and rank 8, commutative S-ring #67 with valen-

cies 1, 3, 42, 124. The group is isomorphic to A5×A4, and is a subgroup of

the holomorph of A5. This allows us to justify, in reasonably clear terms, the

existence of the group AAut(R2) of order 4 and the two algebraic mergings

that appear. Both mergings have rank 7. This explains #95 and #98.

4.1.3.3 Root 3

The group R3 of order 7680 and rank 11, non-commutative S-ring #33 with

valencies 12, 2, 42, 86. It has a transitive faithful action of degree 12 (small-

est degree possible). This action is the wreath product G = PGL(2, 5) o S2

of order 120 · 26, where PGL(2, 5) acts 3-transitively on the projective line
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of size 6 (the entire group G is isomorphic to group #270 of degree 12 in the

catalogue [22]). To describe the action of G of degree 60 combinatorially,

one may start from a BIBD D with six points and 10 blocks, then “blow

up” each point to a 2-element subset, also blowing up all blocks. For the

resulting incidence structure D′, we get G = Aut(D′). Now an appropriate

substructure S of D′ should be found, so that the stabilizer of S in G is a

suitable subgroup of order 128 in G. All possible embeddings of S into D′

provide the 60 points of the S-ring #33.

S-rings #44, #49, #91 are elementary mergings of Schurian S-rings.

In addition, #49 and #91 are wreath products of a suitable non-Schurian

scheme on 30 points with Z2 (which explains the high orders of their auto-

morphism groups).

4.1.3.4 Root 4

The group R4 of order 1920 and rank 20, non-commutative S-ring #4 with

valencies 14, 24, 412. This group acts naturally on 10 points and appears

as a wreath product A5 o S2 (of order 60 · 25). Again, its transitive action

of degree 60 (as S-ring #4) may be described, starting from the action of

degree 10, using a suitable ad hoc explanation. It turns out that 14 of the

19 non-Schurian S-rings are mergings of the transitivity module of R4. Of

these, 5 are algebraic mergings, namely #15, #21, #35, #51, and #52.

Another very helpful trick is credited to M. Muzychuk ([66]). Let us

start from an S-ring A of rank r and its subring A′ of rank r − 1. This

means that A′ is obtained from A by a merging of just two basic sets,

while all other basic sets are unchanged. An efficient sufficient criterion,

formulated in algebraic terms, guarantees the existence of such a merging

A′ of rank r − 1, which we call an elementary merging. It turns out that

a total of 11 non-Schurian S-rings may be explained (in the role of A′) by

selecting a suitable S-ring A. The corresponding information is given in

Table 21.

By now, 18 of the 19 S-rings have been explained by at least one of the

two approaches described above (some having multiple explanations).
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Finally, there remains one (commutative) S-ring of rank 6 from root R4.

None of the previous tricks provides an explanation for this S-ring. This is

S-ring #115, which gave us the most challenging task of finding a suitable

computer-free interpretation. We will face this challenge in the next section.

4.1.4 The Exceptional non-Schurian S-ring #115

We are interested in S-ring A115. It is, in fact, a representative of an orbit

of 30 isomorphic S-rings. This non-Schurian S-ring is a symmetric (and,

therefore, commutative) S-ring of rank 6, with valencies 1, 1, 5, 5, 8, 40. Its

automorphism group, Aut(A115) = R4, is a group of order 1920 and rank

20. It has three imprimitivity systems, with 10, 12 and 30 cells. The basic

graph of valency 40 is the only connected basic graph.

For a presentation of the relations of A115, we need two subgroups of

A5: a group K isomorphic to D5 (the stabilizer of a pentagon), and a group

L isomorphic to A4 (the stabilizer of a point). With six ways to select K

and five ways to select L, we note that the orbit is indeed of size 30.

The group K ∩ L is of order 2; let i be its non-identity element. The

starting groups for the construction of A115 in this specific example are

K = 〈(1, 4)(2, 3), (0, 1, 2, 3, 4)〉 and L = A{1,2,3,4}, so that i = (1, 4)(2, 3).

Now we describe the basic sets as explicit subsets of A5:

X0 = {e}, X1 = {i}, X2 = K \ L of size 8.

The icosahedron graph is a Cayley graph over L; let X3 and X4 be two

complementing (with respect to L \K) connection sets of the icosahedron:

X3 = {(1, 3)(2, 4), (1, 4, 3), (1, 2, 4), (1, 4, 2), (1, 3, 4)},
X4 = {(1, 2)(3, 4), (1, 2, 3), (1, 3, 2), (2, 3, 4), (2, 4, 3)}.
X5 = A5 \ (K ∪ L) is of size 40.

The imprimitivity systems arise from:

K ∩ L = X0 ∪X1: This is the connection set of the graph 30 ◦K2.

K = X0 ∪X1 ∪X2: 6 ◦K10.

L = X0 ∪X1 ∪X3 ∪X4: 5 ◦K12.

A significant feature of this description is that we use the Cayley repre-

sentation of the icosahedron graph (over the subgroup A4) twice. This de-
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scription is close to the concept of orthogonal block structures ([5]), though

it does differ slightly.

4.2 S-rings over AGL1(8)

Another challenging problem was the enumeration of S-rings over the affine

group H = AGL1(8) over the field F8 with eight elements. Recall that H is

a group of order 56, which has a decomposition H ∼= (Z2)
3oZ7, where (Z2)

3

stands for the additive group of F8 while Z7 is the multiplicative group of

F8. This problem was solved in a similar manner to the A5 case. The same

computer took about two months.

There are 2349 S-rings in 129 orbits under Aut(H) (which is isomorphic

to the group AΓL1(8) of order 168). Up to the action of Aut(H), there are

20 non-Schurian S-rings (427 in total) and 109 Schurian S-rings.

The automorphism groups of the 109 Schurian S-rings are again parti-

tioned into 24 small groups of orders up to 3584, which are described by

GAP, 22 large groups of orders 7168 to 2903040, and 63 very large groups

of orders 14680064 and up, of which 56 are wreath products.

The 20 non-Schurian S-rings over AGL1(8) are all mergings of only two

roots. Here, the set R of roots consists of two groups R1 and R2 of orders

168 and 224, both acting transitively on H. There are five minimal S-

rings, of ranks 32, 20, 20, 20, and 14. Eight of the non-Schurian S-rings

appear as mergings of the transitivity module of the root R1. The group

R1 = AΓL1(8) is 2-transitive of degree 8 and order 168, of the form E8oF21,

and where F21 = Z7 : Z3 is the Frobenius group of order 21. The mergings

Rank 56 32 22 20 18 17 16 14 13 12
Total 1 1 1 6 4 1 1 5 2 2

Non-Schurian 0 0 0 0 0 0 0 0 0 0

Rank 11 10 9 8 7 6 5 4 3 2
Total 11 12 6 18 8 15 21 9 4 1

Non-Schurian 6 4 0 1 0 2 7 0 0 0

Table 22: Distribution of S-rings over AGL1(8) with respect to rank
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# |Aut| Structure
0 56 AGL1(8)
1 112 Z2×(AGL1(8))
6 168 (AGL1(8))oZ3

4 224 E22×(AGL1(8))
23 336 Z2×((AGL1(8))oZ3)
8 448 E23×AGL1(8)
7 448 E23×AGL1(8)
70 672 (E22×(AGL1(8)))oZ3

2 896 Z2×(E23×AGL1(8))
11 896 Z2×(E23×AGL1(8))
10 896 Z2×(E23×AGL1(8))
3 896 Z2×(E23×AGL1(8))
64 1008 Z2×L2(8)
59 1344 (E23×AGL1(8))oZ3

54 1344 (E23×AGL1(8))oZ3

53 1344 E23oL3(2)
69 1344 E23oL3(2)
21 1792 Z2×((E23×AGL1(8))oZ2)
12 1792 E22×(E23×AGL1(8))
92 2688 Z2×(E23oL3(2))
62 2688 Z2×((E23×AGL1(8))oZ3)
88 2688 Z2×(E23oL3(2))
26 3584 Z2×((E23×AGL1(8))oZ4)
24 3584 E22×((E23×AGL1(8))oZ2)

Table 23: List of orders of small groups over AGL1(8)

of the root R1, together with other interesting structures, were carefully

investigated jointly with Josef Lauri. Some of the results were recently

published in [50]. The second root R2 has order 224 and rank 20; as an

abstract group, we have R2
∼= E4 × AGL1(8).

4.3 Symmetric S-rings over Z11oZ5

There are 225 symmetric S-rings over Z11oZ5 with ranks 2,3,4,6,7, and 8.

These S-rings are in 13 orbits under the action of Aut(Z11oZ5) (which has

order 110). All S-rings are Schurian. Some information about the orbits is
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Rank valencies |orb| |Aut| Structure
2 1,54 1 55! S55

3 1, 4, 50 11 241 · 315 · 513 · 7 · 11 S11 o S5

3 1, 18, 36 55 39916800 S11

3 1, 10, 44 1 243 · 321 · 511 · 75 · 115 S5 o S11

4 1, 4, 10, 40 11 4790016000 S5×S11

4 1, 10, 222 1 241 · 320 · 511 · 75 · 115 D5 o S11

4 1, 22, 50 11 219 · 34 · 513 · 7 · 11 S11 oD5

6 1, 6, 124 55 1320 PGL2(11)
6 1, 4, 6, 8, 12, 24 55 1320 PGL2(11)
6 1, 22, 10, 202 11 399168000 D5×S11

7 1, 25, 44 1 618435840 S5 oD11

8 1, 24, 222 1 51536320 D5 oD11

8 1, 22, 105 11 550 (Z5×(Z11oZ5))oZ2

Table 24: Orbits of symmetric S-rings over Z11oZ5

presented in Table 24.

Each of the two rank 6 S-rings with automorphism group PGL2(11) is

generated by the basic graph of valency 6. These basic graphs are actually

the two connected components of the distance 2 graph of the semisymmet-

ric graph Γ(PGL2(11), D24, S4), described in [43]. Γ(PGL2(11), D24, S4) is

an example of the general construction of semisymmetric graphs based a

large group and two non-isomorphic subgroups that have the same size.

The cosets of each of the two subgroups serve as vertices in this graph.

Two cosets (necessarily of distinct subgroups) are adjacent if they are not

disjoint.

The three S-rings with automorphism groups S11 and PGL2(11) are the

only primitive symmetric S-rings over Z11oZ5.

Preliminary results of enumeration of all S-rings over Z11oZ5 reveal

that there are 454 S-rings in 34 orbits (with ranks 2 to 55). All of them are

Schurian. These results have not yet been fully analyzed and rechecked. We

did run a few tests, such as calculating the mergings of each S-ring found,

to make sure that no new S-rings were generated in this way. A list of the

non-symmetric S-rings is in Table 25.
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Rank valencies |orb| |Aut| Structure
4 [1, 52, 44] 1 60394125000
4 [1, 4, 252] 11 55 · (5!)11

5 [1, 22, 252] 11 5500000000000
5 [1, 4, 10, 202] 11 1100
5 [1, 52, 222] 1 5032843750
6 [15, 50] 11 1949062500000000
6 [1, 10, 113] 1 5 · (11!)5

6 [1, 4, 52, 202] 11 6600
7 [1, 52, 114] 1 2516421875
7 [15, 252] 11 2685546875
8 [1, 43, 6, 123] 55 660
9 [1, 32, 64, 122] 55 660
9 [1, 22, 52, 104] 11 550
10 [15, 105] 11 199584000
10 [1, 25, 114] 1 25768160
12 [111, 44] 1 19326120
13 [111, 222] 1 1610510
15 [15, 510] 11 275 Z5×(Z11oZ5)
15 [111, 114] 1 805255
30 [15, 225] 11 110 (Z11oZ5)oZ2

55 [155] 1 55 Z11oZ5

Table 25: Orbits of non-symmetric S-rings over Z11oZ5



Chapter 5

Other results

5.1 Links between two semisymmetric

graphs on 112 vertices

The Nikolaev graph (N ) and Ljubljana graph (L) were introduced in Sec-

tion 2.5. We now consider the graph L together with the group Aut(L),

with special attention to a few association schemes and coherent configu-

rations that are related to L, as well as to the embeddings of L into the

graph N .

5.1.1 A master association scheme on 56 points

In our attempts to get a new understanding of the graph L, we started from

the group G = AΓL1(8) := {x 7→ axσ + b|a ∈ F ∗8 , b ∈ F8, σ ∈ Aut(F8)} (F8

is the field with 8 elements, F ∗8 is its multiplicative group).

Clearly, |G| = 8 · 7 · 3 = 168 and G acts naturally on the set of elements

of the Galois field F8 as a 2-transitive permutation group. Identifying F8

with the set [0, 7], we use the representation G = 〈g1, g2, g3〉, where g1 =

(1, 2, 3, 4, 5, 6, 7), g2 = (0, 1)(2, 4)(3, 7)(5, 6), and g3 = (2, 3, 5)(4, 7, 6), as it

appears in [75].

G is a subgroup of S8, therefore it makes sense to consider again the

induced action of G on the same set V = V1 ∪ V2, as it was defined in

78
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Section 2.5.2. V1 is the set of 56 ordered pairs of [0, 7], and V2 is the set of

3-subsets of [0, 7].

With the aid of a computer, it was discovered that in this way we obtain

exactly 8 distinct copies of the same (up to isomorphism) graph L, and that

they are invariant with respect to the induced intransitive action (G, V ).

Each such copy appears as a spanning subgraph of a suitable copy of N .

The stabilizer of an arbitrary vertex in L has order 3; thus, both sta-

bilizers are isomorphic to the cyclic group Z3. Therefore, in comparison

with the “easy” case of N , this vision of L emphasizes that it belongs to a

more difficult case. In the following section, we aim to interpret the graph

L (as well as its embeddings to N ), starting from the association scheme

formed by the 2-orbits of the transitive permutation group (G, V1). In the

beginning, we will essentially rely on the analysis of some computations

performed with the aid of computer algebra packages.

Thus, let Ω = V1 = {(x, y)|x, y ∈ F8, x 6= y} and let (G,Ω) be the

induced transitive action of G = AΓL1(8) on Ω of degree 56.

Proposition 14. The permutation group (G,Ω) has rank 20.

Proof. By definition, the rank of a transitive permutation group is equal to

the number of orbits of the stabilizer of an arbitrary point. The stabilizer of

any point from Ω is similar to the induced cyclic group (Z3,Ω), Z3 = 〈g̃3〉,
where g̃3 denotes the action of g3 on Ω. With the aid of the orbit counting

lemma (CFB lemma in [47]), we obtain for the rank r of (G,Ω) that r =
1
3
(
(
8
2

)
+ 2 · 2) = 20.

Using COCO in conjunction with GAP, we construct and investigate

our master association scheme M = (Ω, 2− orb(G,Ω)).

COCO returns a list of representatives of the 20 2-orbits, finds the

lengths of the 2-orbits, calculates the intersection numbers of M, enumer-

ates all mergings of M, and provides the order of the automorphism group

of each merging (together with the rank and subdegrees of each group).

GAP allows us to get some extra information, particularly about the basic

graphs of M. The first part of the obtained results is presented below.
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Proposition 15. (i) There are eight pairs of antisymmetric basic rela-

tions of valency 3 in M.

(ii) All of these basic graphs are not bipartite.

(iii) Six pairs of basic graphs are connected.

(iv) The automorphism group of each of those 6·2 = 12 connected (di-)graphs

is (G,Ω).

(v) In each pair of connected basic graphs, opposite graphs are not iso-

morphic.

According to the criterion presented in [43], it now evidently makes

sense to construct the incidence double cover on 112 vertices, starting from

each pair {R,R′} of connected antisymmetric basic graphs of valency 3.

Clearly, the incidence double cover (IDC, Definition 2 on page 26) of R

and R′ are isomorphic (undirected) graphs of valency 3. With the aid

of GAP, we divide the six pairs into four “good” pairs, which all provide

isomorphic copies of L, and two “bad” pairs, which provide vertex transitive

disconnected graphs, isomorphic to eight copies of the Heawood graph.

To better explain the observed phenomena, we further consider the nor-

malizer NS56((G,Ω)) of G in S(Ω), which, in this case, coincides with the

group CAut(M).

The second part of the corresponding computer-aided results is pre-

sented below.

Proposition 16. (i) NS56((G,Ω)) ∼= G× Z2 and has order 336.

(ii) The quotient group NS56((G,Ω))/G acts on the 16 antisymmetric 2-

orbits as a group of order 2.

(iii) Each “good” 2-orbit R is mapped to a 2-orbit R∗ from another “good”

pair under this action.

(iv) Each “bad” 2-orbit is mapped to a 2-orbit from another “bad” pair.
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i Rep Pair Val Con R′ R∗ |Aut| cl cl v Aut(v) rank

0 0 (0,1) 1 F 0 0 56! 1 1 S56 o S2 2
1 1 (0,2) 3 F 5 7 8! · 218 2 2 S8 o F21 4
2 2 (1,0) 1 F 2 2 28! · 228 3 1 S56 o S2 3
3 4 (1,4) 3 T 12 4 168 4 2 S8 o F21 20
4 5 (2,0) 3 T 8 3 168 4 2 S8 o F21 20
5 6 (0,4) 3 F 1 9 8! · 218 2 2 S8 o F21 4
6 9 (2,5) 3 T 17 14 168 5 3 G 20
7 11 (4,1) 3 F 9 1 8! · 218 2 2 S8 o F21 4
8 12 (1,2) 3 T 4 12 168 6 2 S8 o F21 20
9 14 (2,1) 3 F 7 5 8! · 218 2 2 S8 o F21 4
10 17 (3,6) 3 T 11 16 168 7 3 G 20
11 18 (4,6) 3 T 10 13 168 8 3 G 20
12 20 (4,0) 3 T 3 8 168 6 2 S8 o F21 20
13 23 (5,2) 3 T 16 11 168 8 3 G 20
14 29 (4,7) 3 T 15 6 168 5 3 G 20
15 30 (7,5) 3 T 14 17 168 9 3 G 20
16 32 (5,7) 3 T 13 10 168 7 3 G 20
17 39 (6,3) 3 T 6 15 168 9 3 G 20
18 43 (2,4) 3 F 18 18 14! · (4!)14 10 4 S14 o (S2 × S4) 3
19 44 (4,2) 3 F 19 19 7! · 487 11 4 S14 o (S2 × S4) 5

Table 26: 2-orbits of M and their covers

Note that the action of the direct factor Z2 on Ω corresponds to the per-

mutation which transposes each pair (x, y) with (y, x) for distinct elements

x, y ∈ F8.

For the reader’s convenience, the main numerical results related to the

above propositions are presented in Table 26. Here, we first list number i

of class Ri, a representative x ∈ Ω such that (0, x) ∈ Ri, and a description

x = (a, b), a, b ∈ F8. In the last column of the table, we refer to the number

of merging of M which is the coherent closure of Ri, according to the list

of all mergings that appears in Appendix A.2.

Note that we get 11 isomorphism classes of basic graphs of M, while four

such classes form the four “good” pairs. The corresponding IDCs split into

four isomorphism classes, described in column “cl v”. The class 3 provides

the graph L. Again, the information in the last column of the table lists

the rank of the coherent closure of the basic graphs (which in most cases
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coincides with M). F21 denotes the Frobenius group of order 21 and degree

7.

5.1.2 Embeddings of L into N

We now wish to have a better understanding of all the possible embeddings

of the graph L into N . Note that the union of each “good” pair of relations

R and R∗ is again an antisymmetric relation (of valency 6). Moreover, each

such relation is a 2-orbit of the group G̃ = CAut(M) ∼= AΓL2(8) × Z2.

Therefore, it makes sense to also consider an association scheme M̃, result-

ing from the group G̃. In principle, M̃ appears as a merging (#1) of M.

Nevertheless, it was more convenient for us to investigate M̃ independently,

using COCO again, and constructing the scheme of 2-orbits of G̃.

We obtain that (G̃,Ω) has rank 12 with four pairs of antisymmetric 2-

orbits of valency 6. For each such 2-orbit, we again construct its IDC; for

two pairs, the resultant cover turns out to be a semisymmetric graph on

112 vertices of valency 6, with automorphism group G̃. We prefer to call

this graph of valency 6 the natural double Ljubljana graph, and denote it

by NL.

Again, GAP is used in conjunction with COCO to obtain our next result.

Proposition 17. (i) The union of edges from IDC L of a “good” relation

R and L∗ of R∗ provides a semisymmetric double Ljubljana graph NL
of valency 6 on 112 vertices.

(ii) Aut(NL) = G̃.

(iii) NL appears as an incidence double cover of the antisymmetric 2-orbit

R ∪R∗ of the group G̃ = CAut(M).

(iv) Each graph NL (as well as each graph L) can be extended in a unique

way to a graph isomorphic to N of valency 15, if we require the ex-

tended graph to be invariant with respect to (G,Ω).

Thus, we have managed to explain more clearly the essence of embedding

a “difficult” case of L into an “easy” case of N .
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Figure 7: Paley tournament P (7) with isolated vertex

Since Aut(L) respects this embedding, we obtain new proof of the fact

that L is a semisymmetric graph.

It is clear that at this stage, all of the results that we have presented

depend essentially on the use of a computer. In the next sections, we aim

to remove this dependence, at least in part. For this purpose, additional

combinatorial structures will be introduced and investigated.

5.1.3 The Ljubljana configuration

As we mentioned, each semisymmetric graph may and should be regarded

as the Levi graph of a symmetric incidence structure (very frequently, it

happens to be a configuration), which is not self-dual. Let C and CT be

two such configurations, defined by the graph L. The diagrams of this

pair of configurations are depicted in Figure 5 of [21]; they are realized as

geometric configurations of points and lines in the Euclidean plane.

Below we develop an alternative, combinatorial approach to the rep-

resentation and investigation of the two 563 Ljubljana configurations, and

exploit its advantages.

First, let us consider a copy of a Paley tournament P (7) with the vertex

set [1, 7] and isolated vertex 0, as depicted in Figure 7.

It is easy to check that Aut(P (7)) = 〈g1, g3〉 (we use notation from

Section 5.1.1) is a Frobenius group F21 of order 21 and degree 7. Recall
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that this copy of F21 is simultaneously the stabilizer of the point 0 in the

group (G, [0, 7]) = (G,F8).

Consider now the orbit O of this graph P (7) under the action of (G,F8).

This orbit O contains eight copies of P (7), where each element from [0, 7]

appears exactly once as an isolated vertex. For each copy of P (7) in O, and

for each vertex x of P (7), we get the induced subgraph T (x), generated by

the out-neighbors of x. Clearly, T (x) is a directed triangle. Denote by B the

collection of these triangles. We are ready to present our first construction.

Let us identify a tuple (x, y) in Ω, with vertex y of the copy of P (7) that

has x as an isolated point. Here, Ω is defined as in Section 5.1.1.

Consider the incidence structure S = (Ω,B) with inclusion in the role

of incidence relation.

Proposition 18. (i) |O| = 8, |B| = 56, S is a symmetric 563 configura-

tion without repeated blocks.

(ii) Aut(S) = G.

(iii) The Levi graph of the configuration S is isomorphic to L.

Proof. The proof of (i) is a trivial consequence of the 2-transitivity of

(G,F8).

For the proof of the remaining parts, let us consider the point graph P
and the block graph B of the configuration S. Clearly, both graphs have

valency 6.

Let us establish that the diameter of the point graph P is 3; for each

of its vertices there are exactly 6, 25 and 24 vertices at distance 1, 2 and

3 respectively. We also need to prove that Aut(P) = G. In principle, it is

possible to elaborate a computer-free proof, checking that each automor-

phism of P , which fixes a vertex (say (0, 1)) and all its neighbors in P , is the

identity automorphism. In practice, we prefer the use of a computer at least

for the simple enumeration of the above distance-i subsets (i ∈ {1, 2, 3})
and inspection of the induced subgraphs of P . As a corollary, we get that

Aut(P) ∼= (G,Ω) and therefore also Aut(S) ∼= (G,Ω).
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To prove that S 6∼= ST , we consider the block graph B, revealing that it

has diameter 4. Moreover, we obtain that the distance-4 set for any vertex

has cardinality 1.

Thus, P 6∼= B and therefore S is not self-dual. This implies that the

Levi graph of the configuration S is semisymmetric.

L is a unique semisymmetric graph on 112 vertices of valency 3 ([21]),

so the Levi graph of the configuration S is isomorphic to L.

5.2 Coherent cages

5.2.1 Coherency of small cages

As we mentioned in the preliminaries, the concept of a coherent cage, a cage

that is a class of its own coherent closure, is a new one. As a first step in

using this concept, we considered the known cages in light of this concept.

Of the 36 graphs listed as small cages in [28], seven are coherent: the

(3, 5)-cage (Petersen graph on 10 vertices), the (3, 6)-cage (Heawood graph

on 14 vertices), the (3, 8)-cage (Tutte’s 8-cage on 30 vertices), the (3, 12)-

cage (generalized hexagon on 126 vertices), the (6, 5)-cage (Robertson graph

on 40 vertices), the (7, 5)-cage (Hoffman-Singleton graph on 50 vertices) and

(7, 6)-cage (on 90 vertices). Three of those ((3, 6), (3, 8) and (3, 12)) are ge-

ometric, coming from an order 2 projective plane, a generalized quadrangle

and a generalized hexagon. Of the remaining four, the coherent closure of

two is non-Schurian, the (6, 5)-cage and the (7, 6)-cage.

5.2.2 Non-Schurian association scheme on 90 points

The (unique) (7, 6)-cage is a graph Γ on 90 vertices discovered by Baker.

The graph is actually the incidence graph of Baker’s semiplane on 45 points

([6]).

We found that this cage is coherent, and the association schemeA that it

generates is a non Schurian scheme of rank 6. The valencies of this scheme

are 1,2,7,14,24,and 42. The automorphism group of A, G = Aut(A) =
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Aut(Γ) is a group of order 15120, the same group as the action of 3.S7 on

90 points as it appears in [84].

Other than the (6, 5)-cage on 40 vertices (Robertson graph) (see [51]),

this is the only known non-geometric non-Schurian coherent cage.

5.3 Non-Schurian association scheme

5.3.1 General case

Schurian association schemes are usually considered “boring” in the con-

text of AGT, since they can be studied by algebraic means. Non-Schurian

association schemes, on the other hand, cannot be explained by algebra

alone, and require a combinatorial point of view. This is why the discov-

ery of previously-unknown non-Schurian association schemes is considered

a success in experimental AGT.

Throughout this thesis we presented a few such schemes, usually in the

context of other investigations, such as S-rings, semisymmetric graphs and

coherent cages. Below, we present one more example of a newly-discovered

non-Schurian association scheme.

5.3.2 Non-Schurian association scheme on 125

points

The basic graphs of a primitive non-symmetric scheme of rank 4, are al-

ways a primitive strongly regular graph and two opposite orientations of its

complement.

Jørgensen started the systematic investigation of primitive non-symmetric

association schemes of rank 4. In [44] there is a survey of known examples

and a table of feasible parameter sets for up to 100 vertices. As a part of

this investigation ([45]), four rank 4 primitive non-symmetric non-Schurian

association schemes on 64 points with parameters of the SRG (64, 27, 10, 12)

were discovered.
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We discovered a non-Schurian rank 4 primitive non-symmetric scheme

on 125 points, M. The basic SRG of M is the point graph of a generalized

quadrangle GQ(4, 6) with parameters (125, 96, 74, 72). The automorphism

group Aut(M) is of order 3000 and rank 7. To the best of our knowledge,

this is a scheme with a new parameter set.

The construction of M starts with 2-transitive action of G = PSU(3, 5)

on 126 points. The stabilizer of a point in this action, Ga is a transitive

group of order 1000 and rank 17 acting on 125 points. M is a merging of

this Schurian association scheme of rank 17.

We wish to try to generalize the examples on 64 and 125 points to a

series of rank 4 primitive non-symmetric schemes on q3 points, q being a

prime power.

5.4 Miscellanea

5.4.1 Modified Weisfeiler-Leman stabilization

The WL-stabilization algorithm calculates the coherent closure of a sym-

metric matrix. Since we needed to calculate the coherent closure of non-

symmetric matrices, we decided to modify this algorithm to work on arbi-

trary matrices.

Let (V,R) be a coherent configuration, with structure constants pkij.

For two subsets S, T ⊆ R, we define S ∗ T : R → N by

S ∗ T (Rk) =
∑
Ri∈S
Rj∈T

pkij.

We consider S ∗ T as a coloring of the elements of R.

For an R ∈ R, let R′ denote the transposed relation of R. For a set

S ⊆ R, let S ′ = {R′|R ∈ S}.
For a given partition P0 ofR, the coherent closure of P0, denoted 〈〈P0〉〉,

is defined as the coarsest partition P of R that is finer than P0 and is a

coherent merging of R.
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The original Weisfeiler-Leman algorithm as used by stabil ([4])

Input: A partition P and tensor of structure constants of R.

1. Make a list of all ordered pairs of elements of P (not necessarily

distinct).

2. Let (S, T ) be the first pair in the list.

3. Calculate S ∗ T .

4. For all sets U ∈ P , if not all elements of U have the same color,

remove U from P and add all maximal monochromatic subsets of U

to P .

5. If the previous step did not change P , let (S, T ) be the next pair in

the list and go to step 3.

6. If the previous step exhausted the list, stop. Output is P .

7. Go to step 1.

Note: the program stabil implements a special case of this algorithm,

in which the underlying coherent configuration (V,R) is always the trivial

one of rank |V |2.
Let (V,R) be a coherent configuration, let R,Q ∈ R, and S, T ⊆ R

such that S ∗ T (R) 6= S ∗ T (Q)

Lemma 19. T ′ ∗ S ′(R′) 6= T ′ ∗ S ′(Q′).

Proof. Immediate in language of coherent algebras.

Lemma 20. If {S1, . . . , Sn} is a partition of S and {T1, . . . , Tm} is a par-

tition of T , then there exist x, y such that Sx ∗ Ty(R) 6= Sx ∗ Ty(Q).

Proof.

S ∗ T (Rk) =
∑
Ri∈S
Rj∈T

pkij =
∑

1≤x≤n
1≤y≤m

∑
Ri∈Sx
Rj∈Ty

pkij =
∑

1≤x≤n
1≤y≤m

Sx ∗ Ty(Rk)
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so if the sum differs for R and Q, one of the summands has to differ.

Theorem 21. If the input partition P0 of the algorithm is closed under

transposition, then so is the output P.

Proof. Let us denote by P1,P2, . . . ,Pn = P the intermediate partitions that

are constructed in the algorithm. Let (Si, Ti) be the pair of sets from Pi
that was used to generate Pi+1 (0 ≤ i < n).

First, we’ll show that for every 0 ≤ i < n, P contains a partition of S ′i

and a partition of T ′i . The proof is by complete induction on i.

To prove that P contains a partition of S ′i, it is enough to show that for

Q,R ∈ R, if R ∈ S ′i and Q 6∈ S ′i, then R and Q are not in the same set of

P :

R′ ∈ Si and Q′ 6∈ Si. Let j be the smallest such that R′ and Q′ are in

different sets in Pj. By this definition, j ≤ i.

If j = 0, then R′ ∈ S0 and Q′ 6∈ S0, so R ∈ S ′0 and Q 6∈ S ′0. P0 is closed

under transposition, so S ′0 ∈ P0. P is finer than P0, so R and Q are not in

the same set in P .

If j > 0, then Sj−1 ∗ Tj−1(R′) 6= Sj−1 ∗ Tj−1(Q′). j − 1 < i, so by

the induction hypothesis, P contains partitions {U1, . . . , Uf} of S ′j−1 and

{V1, . . . , Vg} of T ′j−1.

{U ′1, . . . , U ′f} is a partition of Sj−1 and {V ′1 , . . . , V ′g} is a partition of Tj−1.

By Lemma 20, there exist a, b such that U ′a ∗ V ′b (R′) 6= U ′a ∗ V ′b (Q′) and by

Lemma 19, Vb ∗ Ua(R) 6= Vb ∗ Ua(Q). Vb, Ua ∈ P , and P is stable, so R and

Q are not in the same set in P .

A similar proof works for T ′i .

In order to prove the theorem, we need to show that if R and Q are not

in the same set in P , then R′ and Q′ are not in the same set in P . The

proof is similar to the proof above.

Let j be the smallest such that R and Q are not in the same set in Pj.
If j = 0, then R′ and Q′ are not in the same set in P0 (since P0 is closed

under transposition). P is finer than P0, so R′ and Q′ are not in the same

set in P as well.
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If j > 0, then Sj−1 ∗ Tj−1(R) 6= Sj−1 ∗ Tj−1(Q), so T ′j−1 ∗ S ′j−1(R′) 6=
T ′j−1 ∗S ′j−1(Q′), and P contains partitions of T ′j−1 and of S ′j−1 and is stable,

so R′ and Q′ are in different sets in P .

By Theorem 21, we need to add one step to the algorithm to get an

algorithm that works on every matrix and always outputs a coherent con-

figuration:

The modified Weisfeiler-Leman algorithm

Input: A partition P and tensor of structure constants of R.

0. Let Q be a partition of R into two sets, the set of reflexive relations

and the set of non-reflexive relations. Replace P by the set of all

non-empty intersections of any three sets, one from each of P ,P ′,Q.

1. Make a list of all ordered pairs of elements of P (not necessarily

distinct).

2. Let (S, T ) be the first pair in the list.

3. Calculate S ∗ T .

4. For all sets U ∈ P , if not all elements of U have the same color,

remove U from P and add all maximal monochromatic subsets of U

to P .

5. If the previous step did not change P , let (S, T ) be the next pair in

the list and go to step 3.

6. if the previous step exhausted the list, stop. Output is P .

7. Go to step 1.

Theorem 22. If (V,R) is a coherent configuration and P0 is a partition of

R, then the output of the algorithm, P, is 〈〈P0〉〉.
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Proof. P is finer than P0, since every step of the algorithm refines P0 until

it outputs the result P .

The merging of (V,R) defined by P is (V,S), where S = {
⋃
P |P ∈ P}.

We will denote S = {S1, S2, . . . , Sm}, where Si =
⋃
Pi.

(V,S) is a coherent configuration, since each of the CC conditions holds:

CC1 and

CC2 P is a partition of R, therefore S is a partition of V 2.

CC3 Step 0 and Theorem 21 ensure that for every P ∈ P , P ′ ∈ P . For any

S ∈ S, S =
⋃
P for some P ∈ P , so for S ′ =

⋃
P ′, S ′ ∈ S holds.

CC4 Step 0 ensures that a reflexive relation and a non-reflexive relation

are not in the same set at the input to Step 1, and since the output

is finer, this is also true for P .

CC5 For any i, j, k ∈ [1,m], if (x, y) ∈ Sk, then (x, y) ∈ R for some R ∈ Pk,
and

|{z ∈ X|(x, z) ∈ Si ∧ (z, y) ∈ Sj}| =

=
∑
Ra∈Si
Rb∈Sj

|{z ∈ X|(x, z) ∈ Ra ∧ (z, y) ∈ Rb}| =

=
∑
Ra∈Si
Rb∈Sj

pkab = Pi ∗ Pj(R).

For any (u, v) ∈ Sk, there exists Q ∈ Pk such that (u, v) ∈ Q. But

Pi ∗ Pj(Q) = Pi ∗ Pj(R) (otherwise Pk cannot be a set in P), so

|{z ∈ X|(x, z) ∈ Si ∧ (z, y) ∈ Sj}| does not depend on the selection of

(x, y) ∈ Sk.

We saw that P is a coherent merging of (V,R) and is finer than P0.

For any step in the algorithm that refines a partition P1 into a partition

P2, any coherent merging that is finer than P1 is also finer than P2. Thus,

any coherent merging that is finer than P0 is finer than P , so P = 〈〈P0〉〉.
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Bastert proved an analogue of Theorem 21 for the original variation of

the Weisfeiler-Leman algorithm in [8], by showing that each step of the algo-

rithm maintains closure under transposition. Muzychuk suggested ([68]) a

proof that closure under matrix multiplication and Schur-Hadamard prod-

uct does not destroy closure under transposition.

5.4.2 Pseudo S-rings

In the previous section, we explained the required change for making the

WL algorithm work for every matrix. In fact, the unmodified algorithm

works in almost all cases. In one of the rare cases where it fails to produce

an association scheme, it produces an interesting type of object.

A pseudo Schur ring over the group H is a subring A of the group ring

C[H], such that there exists a partition P of H satisfying:

1. P is a basis of A (as a vector space over C).

2. {e} ∈ P , where e is the identity element of H.

3. For all X ∈ P , X−1 = X or X ∩X−1 = ∅.

The axiom requiring the inverse of every set to be in the partition was

replaced by a weaker requirement: each set must be equal to its inverse

(corresponding to symmetric relations, or simple Cayley graphs), or dis-

joint from its inverse (corresponding to antisymmetric relations, or oriented

graphs). Obviously, every S-ring is a pseudo S-ring.

We found examples of proper pseudo S-rings (that is, pseudo S-rings

which are not S-rings). The examples are over non-Abelian groups of orders

21, 55 and 171. In all cases, the basic sets of each of the pseudo S-rings are

all distinct, and cover all values from 1 to n (n = 6 for the group of order

21, n = 10 for order 55 and n = 18 for order 171).

In Appendix A.3 we provide the basic sets for those pseudo S-rings over

21 and 55 points. The elements of the groups of orders 21 and 55 can be

naturally identified with the arcs of the Paley graphs P7 and P11. We also

provide the basic sets as sets of arcs of the corresponding Paley graph.
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Concluding remarks

The main goal in researching triangle-free strongly regular graphs is to com-

plete their classification. While this goal appears to be out of reach, more

realistic targets are proving that no graph exists for a given feasible pa-

rameter set ([34]), or finding a graph with those parameters. Our study

of the known tfSRGs might help in achieving this goal, by allowing us to

recognize patterns and to prove theoretically that they also repeat in hypo-

thetical larger tfSRGs. Such a general proof may aid either in constructing

a larger tfSRG, or proving its non-existence for a given set of parameters.

The second part of the study, enumerating equitable partitions of known

tfSRGs, seems more attractive for this purpose, both for construction of new

graphs and for non-existence proofs. For constructing new graphs, recall

that equitable partitions correspond to models of graphs. If we can interpret

a given partition as a construction of the graph based on a combinatorial

object which is itself a member of a sequence, it is possible that replacing

the object with a larger object of the same sequence will result in the

construction of a larger tfSRG. On the other hand, if we can recognize

a pattern and generalize it, proving that a putative tfSRG with a set of

parameters must contain a specific equitable partition, we can prove that

such a graph does not exist by showing it cannot contain such an equitable

partition.

Considering the results in light of the three levels of computer algebra

93
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experimentation, we see that all three levels are represented in Chapter

3. Theorem 10 and the preceding two propositions are examples of under-

standing a pattern in the computer data and generalizing it to a theorem

that is true for all tfSRGs of negative Latin square type. In Section 3.3.3

we see an example of interpreting a computer result, by proving the exis-

tence of a specific equitable partition without the use of a computer. The

results in Section 3.1.3 are presented without an attempt at interpretation

or generalization.

The classification of all S-rings is an ambitious research objective. Our

results are a small step towards this goal. The enumeration of S-rings

over groups of orders 56 and 60 (and of symmetric S-rings over a group of

order 55) improves a little on the body of computer results, which currently

covers all groups of orders up to 47. The enumeration of the S-rings over

A5 is the first enumeration of S-rings over a non-Abelian simple group.

Understanding this enumeration might help in generalizing this result into

a classification of S-rings over all alternating groups.

Viewing the results in Chapter 4 through the lens of three levels of

computer algebra experimentation, we see that for A5 we have some under-

standing of the results, showing how the existence of most of the S-rings

may be proved without the aid of a computer. A similar understanding,

albeit with less detail, is available for AGL1(8). For Z11oZ5, we provide

only the calculation results, without any attempt at interpretation.

Using coherent configurations, we discovered a connection between semisym-

metric graphs of parabolic type and semisymmetric graphs of non-parabolic

type. If we can extended these results to larger graphs, then this type of

connection might be useful for proving that non-parabolic semisymmetric

graphs are indeed semisymmetric .

Most of the results presented in this thesis are part of very ambitious

projects (classification of S-rings, classification of tfSRGs). Still, there are

some very concrete and obvious future research directions arising from some

of the presented results:

• Classifying non-rigid equitable partitions of the Mesner graph and
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NL2(10).

• Classifying all equitable partitions of the Gewirtz graph.

• Confirming classification of S-rings over Z11oZ5.

• Understanding the remaining large automorphism groups of Schurian

S-rings over A5.

• Understanding the non-Schurian S-rings over AGL1(8), similar to

what was done for A5.

• Generalizing the non-Schurian scheme on 125 points to a sequence of

non-Schurian schemes on p3 points.

• Generalizing the examples of proper pseudo S-rings.

• Studying the notion of pseudo S-rings.
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Data

A.1 Equitable partitions of Clebsch graph

partition |stabilizer|
{{0,1},{2,3},{4,5},{6,7},{8,9},{10,11},{12,13},{14,15}} 384

{{0,1},{2,3},{4,5,8,9},{6,7},{10,11},{12,13},{14,15}} 32

{{0,1},{2,3,4,5,8,9},{6,7},{10,11},{12,13},{14,15}} 48

{{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}} 192

{{0,1,2,3,4,5,6,7},{8,9,10,11},{12,13,14,15}} 32

{{0,1,2,3,4,5,6,7},{8,9,10,11,12,13,14,15}} 192

{{0,1,2,3,4,5,6,7},{8,11,13,14},{9,10,12,15}} 96

{{0,1,2,3,4,5,6,7,8,9,10,11},{12,13,14,15}} 48

{{0,1,2,3,4,5,10,11},{6,7,8,9},{12,13,14,15}} 8

{{0,1,2,3,4,5,10,11},{6,7,8,9,12,13,14,15}} 32

{{0,1,4,5},{2,3,6,7},{8,9,10,11},{12,13,14,15}} 32

{{0,1,4,5},{2,3,10,11},{6,7,8,9},{12,13,14,15}} 48

{{0,1,6,7},{2,3},{4,5},{8,9},{10,11,12,13},{14,15}} 64

{{0,1,6,7},{2,3},{4,5,8,9},{10,11},{12,13},{14,15}} 16

{{0,1,6,7},{2,3},{4,5,8,9},{10,11,12,13},{14,15}} 16

{{0,1,6,7},{2,3,4,5},{8,9},{10,11},{12,13},{14,15}} 32

{{0,1,6,7},{2,3,4,5},{8,9},{10,11,12,13},{14,15}} 32

{{0,1,6,7},{2,3,4,5},{8,9,14,15},{10,11,12,13}} 128

{{0,1,6,7},{2,3,4,5,8,9},{10,11},{12,13},{14,15}} 8

{{0,1,6,7},{2,3,4,5,8,9},{10,11,12,13},{14,15}} 16

{{0,1,6,7},{2,3,4,5,8,9,14,15},{10,11,12,13}} 64

{{0,1,6,7},{2,3,8,9},{4,5,14,15},{10,11,12,13}} 64

96
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partition |stabilizer|
{{0,1,6,7},{2,5},{3,4},{8,9},{10,13},{11,12},{14,15}} 16

{{0,1,6,7,10,11},{2,3,4,5,8,9},{12,13},{14,15}} 24

{{0,1,6,7,10,11,12,13},{2,3},{4,5},{8,9},{14,15}} 192

{{0,1,6,7,10,11,12,13},{2,3,4,5},{8,9},{14,15}} 32

{{0,1,6,7,10,11,12,13},{2,3,4,5,8,9},{14,15}} 48

{{0,1,6,7,10,11,12,13},{2,3,4,5,8,9,14,15}} 384

{{0,3},{1,2},{4,7},{5,6},{8,11},{9,10},{12,15},{13,14}} 192

{{0,3,4,7},{1,2,5,6},{8,11},{9,10},{12,15},{13,14}} 32

{{0,3,4,7,8,11},{1,2,5,6,9,10},{12,15},{13,14}} 48

{{0,3,5,6},{1,2,4,7},{8,9,10,11},{12,13,14,15}} 32

{{0,3,5,6},{1,2,4,7},{8,11,13,14},{9,10,12,15}} 192

{{0,6},{1,7},{2,4},{3,5},{8,9},{10,11},{12,13},{14,15}} 32

{{0,7},{1,6},{2,3},{4,5},{8},{9},{10,12},{11,13},{14},{15}} 32

{{0,7},{1,6},{2,3,4,5},{8},{9},{10,12},{11,13},{14},{15}} 32

{{0,7},{1,6},{2,5},{3,4},{8},{9},{10},{11},{12},{13},{14},{15}} 96

{{0,7,11},{1,2,5,6,9,10},{3,4,8},{12},{13,14},{15}} 24

{{0,7,11},{1,6,10},{2,5,9},{3,4,8},{12},{13},{14},{15}} 48

{{0,7,11,13},{1,6,10,12},{2,3},{4,5},{8,9},{14},{15}} 48

{{0,7,11,13},{1,6,10,12},{2,3,4,5},{8,9},{14},{15}} 16

{{0,7,11,13},{1,6,10,12},{2,3,4,5,8,9},{14},{15}} 48

{{0,7,11,13,14},{1,2,3,4,5,6,8,9,10,12},{15}} 120

{{0,7,11,13,14},{1,2,3,5,10},{4,6,8,9,12},{15}} 20

A.2 Mergings of master association scheme

M

No. rank merging |Aut|
1 12 (1,7)(5,9)(3,4)(12,8)(6,14)(17,15)(10,16)(11,13) 336

2 8 (1,5)(6,17,10,11,13,16,14,15)(7,9)(18,19)(3,8)(12,4) 1344

3 8 (2,19)(4,8,6,17)(7,9)(10,11)(1,12,13,15)(5,3,16,14) 1344

4 8 (1,3,4,7)(5,12,8,9)(6,11,13,14)(17,10,16,15) 21504

5 8 (1,3,6,11)(5,12,17,10)(4,7,13,14)(8,9,16,15) 672

6 8 (1,3,13,14)(5,12,16,15)(4,6,7,11)(8,17,9,10) 1344

7 8 (1,4,11,14)(5,8,10,15)(3,6,7,13)(12,17,9,16) 1344

8 8 (1,6,7,14)(5,17,9,15)(3,4,11,13)(12,8,10,16) 2688

9 8 (1,5)(2,19)(3,12,14,15)(13,16)(4,6,9,10)(8,17,7,11) 1344

10 7 (1,5)(6,17,10,11,13,16,14,15,18,19)(7,9)(3,8)(12,4) 40320



98 APPENDIX A. DATA

No. rank merging |Aut|
11 7 (18,19)(1,3,4,7)(5,12,8,9)(6,11,13,14)(17,10,16,15) 228 · 168

12 6 (6,17,10,11,13,16,14,15)(18,19)(1,12,8,7)(5,3,4,9) 336

13 6 (1,5,3,12,4,8,7,9)(6,17,14,15)(10,11,13,16)(18,19) 2688

14 6 (1,3,4,6,7,11,13,14)(5,12,8,17,9,10,16,15) 228 · 38 · 7
15 6 (1,5,3,12,4,8,7,9)(18,19)(6,10,16,14)(17,11,13,15) 336

16 6 (1,5,6,17,7,9,14,15)(3,12,4,8,10,11,13,16) 21504

17 6 (1,5,7,9)(3,12,4,8)(6,17,10,11,13,16,14,15)(18,19) 2688

18 6 (2,18,19)(1,3,4,6,11,13,14)(5,12,8,17,10,16,15) 846720

19 6 (2,18,19)(3,4,6,7,11,13,14)(12,8,17,9,10,16,15) 846720

20 6 (1,5,3,12,4,8,7,9)(6,17,10,11,13,16,14,15) 172032

21 5 (2,19)(1,3,8,17,9,10,13,14)(5,12,4,6,7,11,16,15) 1344

22 5 (2,19)(1,12,4,17,7,10,16,14)(5,3,8,6,9,11,13,15) 168

23 5 (2,19)(1,12,4,17,9,11,16,14)(5,3,8,6,7,10,13,15) 10752

24 5 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15) 232 · 39 · 5 · 7
25 5 (6,17,10,11,13,16,14,15,18,19)(1,12,8,7)(5,3,4,9) 336

26 5 (18,19)(1,3,4,6,7,11,13,14)(5,12,8,17,9,10,16,15) 249 · 38 · 7
27 5 (1,5,3,12,4,8,7,9)(6,17,10,11,13,16,14,15)(18,19) 231 · 168

28 5 (1,5,7,9)(3,12,4,8)(6,17,10,11,13,16,14,15,18,19) 80640

29 5 (1,5,3,12,6,17,10,11)(2,19)(4,8,7,9,13,16,14,15) 672

30 5 (1,5,3,12,13,16,14,15)(2,19)(4,8,6,17,7,9,10,11) 10752

31 5 (1,5,4,8,10,11,14,15)(2,19)(3,12,6,17,7,9,13,16) 10752

32 5 (2,19)(1,3,4,6,7,11,13,14)(5,12,8,17,9,10,16,15) 249 · 315 · 7
33 5 (2,19)(1,3,8,6,7,10,16,15)(5,12,4,17,9,11,13,14) 168

34 5 (2,19)(1,3,8,6,9,11,16,15)(5,12,4,17,7,10,13,14) 672

35 4 (2,3,12,4,8,6,17,7,9,10,11,13,16,14,15,18,19) 27 · 310 · 5 · 79

36 4 (2,18,19)(1,3,4,6,7,11,13,14)(5,12,8,17,9,10,16,15) 21 · (8!)7

37 4 (1,5,3,12,4,8,6,17,10,11,13,16,14,15)(2,18,19)(7,9) 8 · (7!)2

38 4 (1,5,3,12,7,9,13,16,14,15)(2,10,11,19)(4,8,6,17,18) 40320

39 4 (1,5,2,3,12,4,8,6,17,10,11,13,16,14,15,18,19) 27 · 310 · 5 · 79

40 4 (1,5,4,8,6,17,7,9,10,11)(2,13,16,19)(3,12,14,15,18) 40320

41 4 (1,5)(2,18,19)(3,12,4,8,6,17,7,9,10,11,13,16,14,15) 8! · (7!)2

42 4 (1,5,3,12,4,8,7,9)(6,17,10,11,13,16,14,15,18,19) 228 · 8!

43 4 (1,5,6,17,7,9,14,15,19)(3,12,4,8,10,11,13,16,18) 8 · 9!

44 4 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15)(2,19) 7! · (2 · 242)7

45 4 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15)(18,19) 7! · (24 · 4!)7

46 3 (1,5)(2,3,12,4,8,6,17,7,9,10,11,13,16,14,15,18,19) 8! · (7!)8

47 3 (1,5,2,3,12,4,8,6,17,10,11,13,16,14,15,18,19)(7,9) 8! · (7!)8

48 3 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15,18,19) 228 · 28!
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No. rank merging |Aut|
49 3 (1,5,2,3,12,4,8,6,17,7,9,10,11,13,16,14,15,19) (4!)14 · 14!

50 3 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15)(2,18,19) 7! · (8!)7

A.3 Basic sets of pseudo S-rings

The Frobenius group of order 21 is generated by an element a of order 3

and an element b of order 7:

a0b0

a1b0, a1b1

a2b4, a2b5, a2b6

a2b0, a2b1, a2b2, a2b3

a1b2, a1b3, a1b4, a1b5, a1b6

a0b1, a0b2, a0b3, a0b4, a0b5, a0b6

Basic sets as arcs of Paley graph P7:

(0, 1)

(0, 2), (1, 3)

(4, 1), (5, 2), (6, 3)

(0, 4), (1, 5), (2, 6), (3, 0)

(2, 4), (3, 5), (4, 6), (5, 0), (6, 1)

(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 0)

The Frobenius group of order 55 is generated by an element a of order

5 and an element b of order 11:

a0b0

a2b3, a2b7

a1b0, a1b1, a1b2

a4b0, a4b5, a4b7, a4b9

a3b0, a3b4, a3b5, a3b9, a3b10

a3b1, a3b2, a3b3, a3b6, a3b7, a3b8

a4b1, a4b2, a4b3, a4b4, a4b6, a4b8, a4b10

a1b3, a1b4, a1b5, a1b6, a1b7, a1b8, a1b9, a1b10

a2b0, a2b1, a2b2, a2b4, a2b5, a2b6, a2b8, a2b9, a2b10

a0b1, a0b2, a0b3, a0b4, a0b5, a0b6, a0b7, a0b8, a0b9, a0b10
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Basic sets as arcs of Paley graph P11:

(0, 1)

(0, 9), (1, 10)

(6, 9), (7, 10), (8, 0)

(0, 4), (1, 5), (9, 2), (10, 3)

(1, 6), (2, 7), (3, 8), (4, 9), (5, 10)

(0, 5), (6, 0), (7, 1), (8, 2), (9, 3), (10, 4)

(2, 6), (3, 7), (4, 8), (5, 9), (6, 10), (7, 0), (8, 1)

(0, 3), (1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (9, 1), (10, 2)

(2, 0), (3, 1), (4, 2), (5, 3), (6, 4), (7, 5), (8, 6), (9, 7), (10, 8)

(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 0)

A.4 Computer readable data

The file tf7.gap defines the following variables:

1. tf7_graphs is a list of the seven primitive triangle-free strongly reg-

ular graphs.

2. tf7_embed[i][j] is a list of orbits representatives of embeddings of

graph i into graph j.

3. tf7_ep[i] is a list of orbits representatives of equitable partitions of

graph i (for i at most 4).

4. tf7_aep[i] is a list of orbits representatives of automorphic equitable

partitions of graph i.

5. tf7_nep[i] is a list of orbits representatives of non-rigid equitable

partitions of graph i (for i at most 5).

The file a5.gap defines two variables: a5 is a regular action of the group

A5 and a5_s is a list of orbits representatives of S-rings over this group.

The file agl18.gap defines two variables: agl18 is a regular action of

the group AGL1(8) and agl18_s is a list of orbits representatives of S-rings

over this group.
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The file g55.sym.gap defines two variables: g55 is a regular action of

the group Z11oZ5 and g55_s is a list of orbits representatives of symmetric

S-rings over this group.

The files are available also at the following two URLs:

http://my.svgalib.org/phdfiles

http://www.math.bgu.ac.il/~zivav/phdfiles

http://my.svgalib.org/phdfiles
http://www.math.bgu.ac.il/~zivav/phdfiles
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לפילוסופיה" "דוקטור תואר לקבלת הדרישות של חלקי מילוי לשם מחקר

מאת

זיו-אבמתן

בנגב גוריון בן אוניברסיטת לסינאט הוגש

 ____________________המנחה אישור

____________________ קרייטמן ע"ש מתקדמים מחקר ללימודי הספר בית דיקן אישור

09/11/2013ו' בכסלו תשע"ד 

שבע באר



העבודה נעשתה בהדרכת מיכאיל קלין

במחלקה למתמטיקה

בפקולטה למדעי הטבע



הצהרת תלמיד המחקר עם הגשת עבודת הדוקטור לשיפוט

אני החתום מטה מצהיר בזאת:

   X .חיברתי את חיבורי בעצמי, להוציא עזרת ההדרכה שקיבלתי מאת המנחה  

   X  מתקופת היותי תלמיד  החומר המדעי הנכלל בעבודה זו הנו פרי מחקרי

.מחקר

___  בעבודה נכלל חומר מחקרי שהוא פרי שיתוף עם אחרים, למעט עזרה טכנית

הנהוגה בעבודה ניסיונית. לפי כך מצורפת בזאת הצהרה על תרומתי ותרומת

שותפי   למחקר, שאושרה על ידם ומוגשת בהסכמתם.

  חתימה ___________  מתן זיו-אב   שם התלמיד 9/11/2013תאריך 
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מגיש: מתן זיו-אב

מנחה: מיכאיל קלין

תקציר

v)גרף רגולרי בחזקה עם פרמטרים ,k ,λ ,μ)הוא גרף רגולרי מערכיותkעל vקדקודים בו

שכנים משותפים.μשכנים משותפים ולכל שני אי-שכנים ישλלכל שני קדקודים שכנים יש

חלוקה שוויונית של גרף היא חלוקה של קבוצת הקדקודים בה מספר השכנים של קדקוד ממחלקה אחת

במחלקה שניה לא תלוי בבחירת הקדקוד, אלא רק בבחירת המחלקות.

Mהיא תת אלגברה שלnאלגברה קוהרנטית מסדר n(ℂ)שכוללת את מטריצה היחידה ואת

, וסגורה תחת שחלוף ותחת מכפלת שור-הדמר (כלומר מכפלה לפי קואורדינטות).1המטריצה שכל אבריה 

, וסכום מטריצות הבסיס הוא המטריצה שכל1 או 0לאלגברה כזו יש בסיס של מטריצות שכל אבריהן הם 

הם  קבוצה1אבריה  על  התאמה  סכמת   .Xהקרטזית המכפלה  של  חלוקה  היא   X×Xכך

שמטריצות הסמיכויות של המחלקות מהוות בסיס לאלגברה קוהרנטית הומוגנית. קבוצת המסלולים של

חבורה טרנזיטיבית בפעולתה על המכפלה הקרטזית היא סכמת התאמה. סכנת התאמה כזו נקראת סכמת

התאמה שורית. סכמה שמקורה אינו חבורת תמורות נקראת אי-שורית.

שיש לו בסיס המקיים תכונותHהוא תת חוג של חוג החבורה שלHחוג שור מעל חבורה

לבין סכמות התאמה שחבורת האוטומורפיזמים שלהןHמסוימות. יש התאמה בין חוגי שור מעל חבורה

.Hמכילות פעולה רגולרית של 

גרף נקרא סימטרי למחצה אם חבורת האוטומורפיזמים שלו היא טרנזיטיבית בפעולתה על צלעות הגרף,

אך אי-טרנזיטיבית בפעולתה על הקדקודים. גרף כזה הוא בהכרח דו-צדדי.

ישנם שבעה גרפים ידועים שהם פרימיטיביים, רגולריים בחזקה, וחסרי משולשים (כלומר שהם קשירים,

). בעזרת מחשב מנינו לכל צמד גרפים כאלו את מספר האפשרויות לשבץλ=0משלימיהם קשירים, ו-

את הקטן בתוך הגדול כתת גרף מושרה. עבור ארבעה הגרפים הקטנים, מנינו את כל החלוקות השוויוניות.

עבור שלושה הגרפים הגדולים יותר מנינו את כל החלוקות השוויוניות המקיימות תנאי סימטריה מסוימים.

עבוא חלק מהתוצאות אנו כוללים הוכחות או הסברים תאורטיים.

, כל חוגי-שור נמנו בעזרת מחשב. אנו מרחיבים מניה זו לחבורות48עבור כל החבורות מסדר קטן מ-

A5 ,AGL1(8)-ו  ℤ5⋊ℤ11 ו-56, 60(מסדר מאשרותA5 בהתאמה). התוצאות עבור55 

 הן מקדמיות.55מיון קודם של חוגי שור פרימיטיביים מעל חבורה זו. התוצאות עבור החבורה מסדר 

, ובעזרת בניה מסוג כיסוי החלה כפול, אנו מציגים קשרים בין20 ודרגה 56בעזרת סכמת התאמה מסדר 

 קדקודים: גרף לובליאנה מערכיות שלוש, וגרף ניקולייב מערכיות112שני גרפים סימטריים למחצה ידועים על 

15.

 קשורה למרובע125 וסדר 4אנו מציגים ודנים שתי סכמות החלה אי-שוריות מעניינות. האחת, מדרגה 

GQהמוכלל  זו עשויה להיות חלק מסדרה של סכמות התאמה פרימיטיביות מסדר(4,6) . סכמה 

p3 ולמישור למחצה6 ומותן 7. היא קשורה לכלוב מערכיות 90 וסדר 6. הסכמה האחרת היא מדרגה ,

נקודות. הכלוב הנ"ל והכלוב מערכיות 45של בייקר על  ומותן 5   הם הכלובים הקוהרנטיים האי-שוריים6 

הידועים היחידים שמקורם אינו גאומטרי.

פשוט גרף  של  לחישוב הסגור הקוהרנטי  ידוע  הוא אלגוריתם  ולמן  וויספילר  של  הייצוב  אלגוריתם 
בסיבוכיות פולינומיאלית. אנו הכללנו את האלגוריתם לכזה שמייצב גם גרפים מכוונים צבועים. השוואת

הפלט של האלגוריתם המקורי והאלגוריתם המוכלל הביאה לגילוי של חוגי שור מדומים על
p( p−1)
2

.p∈{7,11,19}נקודות, עבור 
מילות מפתח: קונפיגורציות קוהרנטיות, סכמות התאמה, גרפים רגולריים בחזקה, חוגי שור, גרפים סימטריים

למחצה, אלגברה ממוחשבת.


