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Distances in Graphs

𝐺 = 𝑉, 𝐸, 𝑤 weighted undirected graph

How do we define a distance?

For a path 𝑃:

Let 𝑢, 𝑣 ∈ 𝑉

Distance: 𝛿 𝑢, 𝑣 = , over all 𝑃 from 𝑢 to 𝑣

For unweighted graphs: 𝑤 𝑃 = the number of edges in 𝑃 (assume 𝑤 𝑒 = 1)

APSP and APASP
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Problem(s) Definition

Common Input: 𝐺 = 𝑉, 𝐸, 𝑤  weighted undirected graph.

Several problems:

Our focus: APSP, the others – utilized as a tool

Single Source Shortest 
Paths (SSSP)

Multi Source Shortest 
Paths (MSSP)

All Pairs Shortest 
Paths (APSP)

Additional Input: A single source 𝑠 ∈ 𝑉 A subset of sources 𝑆 ⊆ 𝑉 None (𝑆 = 𝑉)

Output:
Distances from 𝑠 to all 
𝑣 ∈ 𝑉

Distances from any 𝑠 ∈ 𝑆 
to any 𝑣 ∈ 𝑉

Distances from all 
𝑢 ∈ 𝑉 to all 𝑣 ∈ 𝑉

APSP and APASP



APSP Conjecture

𝑉 = 𝑛, 𝐸 = 𝑚.

How fast can we compute SSSP?
o Dijkstra (1956): 𝑂 𝑚 + 𝑛 ⋅ log 𝑛

How fast can we compute APSP?
o Floyd-Warshall (1962): 𝑂 𝑛3

o Johnson (1977): 𝑂 𝑛𝑚 + 𝑛2 ⋅ log 𝑛

o ...

o Williams (2014): 𝑂
𝑛3

2 Ω log 𝑛

None strictly better than 𝑛3!

APSP and APASP



APSP Conjecture

Question 1: Is there an 𝜀 > 0 for which APSP can be computed in ෨𝑂 𝑛3−𝜀 ?

APSP Conjecture: There exists no such 𝜀!

Question 2: Can All Pairs Approximated Shortest Paths (APASP) be computed 

faster than 𝑛3?

Short Answer: Yes! Many approximations in ෨𝑂 𝑛3−𝜀

How do we define an approximation?

APSP and APASP



All-Pairs Approximate Shortest Paths

For example: 𝛿 𝑎, 𝑐 = 8, 

                       𝛿 𝑏, 𝑑 = 8.

Estimated distance: 𝑑 𝑢, 𝑣

𝛼, 𝛽 -APASP: 𝑑 𝑢, 𝑣 ∈ 𝛿 𝑢, 𝑣 , 𝛼 ⋅ 𝛿 𝑢, 𝑣 + 𝛽

𝑑 𝑢, 𝑣 = 𝑤 𝑃 , for some 𝑃 between 𝑢 and 𝑣

For example: 𝛼 = 1, 𝛽 = 1 ⇒ 1,1 -APASP

                       𝑑 𝑎, 𝑐 = 9,

                       𝑑 𝑏, 𝑑 = 8.
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Major Approximation Categories

𝛼, 𝛽 -APASP: 𝑑 𝑢, 𝑣 ∈ 𝛿 𝑢, 𝑣 , 𝛼 ⋅ 𝛿 𝑢, 𝑣 + 𝛽

Multiplicative 𝛼-APASP: 𝛽 = 0

Additive +𝛽-APASP: 𝛼 = 1

For small 𝜀 > 0: Nearly-Additive 1 + ε, β -APASP

Which is better? 

APSP and APASP



Our Setting

Directed? 

Unweighted? 

Negative Weights? 

Undirected?

Weighted? 

Non-negative weights?

Our focus: ⇑

𝒃
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Known Additive APASP for Unweighted

Dor, Halperin and Zwick (1996): +2-APASP 

𝑑 𝑢, 𝑣 ∈ 𝛿 𝑢, 𝑣 , 𝛿 𝑢, 𝑣 + 2

Two algorithms: For dense graphs with ෨𝑂(𝑛
7

3) runtime

                              For sparse graphs with ෨𝑂(𝑛
3

2𝑚
1

2) runtime

In total: ෨𝑂(min{𝑛
7

3, 𝑛
3

2𝑚
1

2}) runtime

Strictly less than 𝑛3

Additive APASP: Weighted and Unweighted



What Can We Do for Weighted Graphs?

Observation: Weighted graphs ⇒ Weights can be scaled 

Multiply all weights by any 𝑐 ∈ ℝ+: 𝑤′ 𝑢, 𝑣 = 𝑐 ⋅ 𝑤 𝑢, 𝑣

Shortest paths will remain shortest path

The distance 𝛿′ 𝑢, 𝑣 = 𝑐 ⋅ 𝛿 𝑢, 𝑣

We may assume ∀𝑒∈𝐸: 𝑤 𝑒 ≥ 1

Question 3: Can a weighted +𝛽-APASP have a constant 𝛽?

For example: +2-APSP? +4-APASP? 

Short Answer: Yes, but it is equivalent to exact APSP. 

Additive APASP: Weighted and Unweighted



What Can We Do for Weighted Graphs?

Question 3: Can a weighted +𝛽-APASP have a constant 𝛽?

Short Answer: Yes, but it is equivalent to exact APSP. 

Scale the weights: What if 𝑐 = 𝛽 + 𝜀?

𝑑′ 𝑢, 𝑣 ∈ 𝛿′ 𝑢, 𝑣 , 𝛿′ 𝑢, 𝑣 + 𝛽

⇓
𝑤 𝑒 ≥ 𝛽 + 𝜀

⇓
𝑑′ 𝑢, 𝑣 = 𝛿′ 𝑢, 𝑣

Exact APSP: 𝑑 𝑢, 𝑣 =
𝑑′ 𝑢,𝑣

𝑐
=

𝛿′ 𝑢,𝑣

𝑐
= 𝛿 𝑢, 𝑣

Additive APASP: Weighted and Unweighted



What Can We Do for Weighted Graphs?

𝛽 can depend somehow on 𝑤: 𝐸 → ℝ

For example: 𝑊max = max 𝑤 𝑒

Unweighted: +2-APASP

Weighted: +2𝑊max-APASP

Is it a “good” guarantee?

𝒃

𝒂 𝒄

𝒅
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Additive APASP: Weighted and Unweighted

For example: 𝑑 𝑎, 𝑐 ∈ 8,268,20006



What Can We Do for Weighted Graphs?

Better definition?

Let 𝑢 v be shortest path between 𝑢 and 𝑣

𝑊𝑖 𝑢 𝑣  is the weight of the 𝑖th heaviest edge

For example: 𝑊1 𝑎 𝑐 = 6,

                        𝑊2 𝑏 𝑑 = 2.
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𝒂 𝒄
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Additive APASP: Weighted and Unweighted



What Can We Do for Weighted Graphs?

+𝑓 𝑊1, … , 𝑊𝑘 -APASP:

                𝑑 𝑢, 𝑣 ≤ 𝑤 𝑃 + 𝑓 𝑊1 𝑃 , … , 𝑊𝑘 𝑃

Over all shortest paths 𝑃 between 𝑢 and 𝑣

For example: +2𝑊1-APASP:

𝑑 𝑢, 𝑣 ≤ 𝑤 𝑃 + 2𝑊1 𝑃

    +2𝑊1 + 2𝑊2-APASP:

𝑑 𝑢, 𝑣 ≤ 𝑤 𝑃 + 2𝑊1 𝑃 + 2𝑊2 𝑃

The guarantee for 𝑑 𝑢, 𝑣  is “local” and not “global”

𝒃

𝒂 𝒄

𝒅
𝟐

𝟔

𝟗
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Additive APASP: Weighted and Unweighted



An Additive APASP With a “Local” Guarantee

Cohen and Zwick (1997): +2𝑊1-APASP

 𝛿 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑣 ≤ 𝑤 𝑃 + 2𝑊1 𝑃

Two algorithms: For dense graphs with ෨𝑂(𝑛
7

3) runtime

                              For sparse graphs with ෨𝑂(𝑛
3

2𝑚
1

2) runtime

In total: ෨𝑂(min{𝑛
7

3, 𝑛
3

2𝑚
1

2}) runtime

The same runtime as the unweighted setting!

Additive APASP: Weighted and Unweighted



Discussion: Commensurate

𝛼, 𝛽 -APASP for unweighted

𝑑 𝑢, 𝑣 ≤ 𝛿 𝑢, 𝑣 + 𝛽

𝑑 𝑢, 𝑣 ≤ 𝑤 𝑃 + 𝛽

Over all shortest paths 𝑃 between 𝑢 and 𝑣

A weighted version of this?

Recall 𝐺 = 𝑉, 𝐸, 𝑤  and let 𝑓 𝛽, 𝐺, 𝑃  be a function

Consider an 𝛼, 𝑓 𝛽, 𝐺, 𝑃 -APASP for weighted

𝑑 𝑢, 𝑣 ≤ 𝑤 𝑃 + 𝑓 𝛽, 𝐺, 𝑃

Additive APASP: Weighted and Unweighted



Discussion: Commensurate

Unweighted: 𝑑 𝑢, 𝑣 ≤ 𝑤 𝑃 + 𝛽

Weighted: 𝑑 𝑢, 𝑣 ≤ 𝑤 𝑃 + 𝑓 𝛽, 𝐺, 𝑃

If: when ∀𝑒∈𝐸: 𝑤 𝑒 = 1 ⇒ 𝑓 𝛽, 𝐺, 𝑃 = 𝛽

Then: 𝛼, 𝑓 𝛽, 𝐺, 𝑃 -APASP is a Commensurate Version of 𝛼, 𝛽 -APASP

Examples:   +2 and +2𝑊max 

  +2 and +2𝑊1

  +2 and +𝑊1 + 𝑊2

Additive APASP: Weighted and Unweighted

𝑓 𝛽, 𝐺, 𝑃 = 𝛽𝑊max

𝑓 𝛽, 𝐺, 𝑃 = 𝛽𝑊1

𝑓 𝛽, 𝐺, 𝑃 =
𝛽

2
𝑊1 + 𝑊2
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Discussion: Strongly Commensurate

Problems can be commensurate

What if their algorithms are not of the same “hardness”?

We need to consider the runtimes

𝒜1 algorithm for unweighted 𝛼, 𝛽 -APASP with a runtime 𝑇 𝑛

𝒜2 algorithm for a commensurate 𝛼, 𝑓 𝛽, 𝐺, 𝑃 -APASP

Additive APASP: Weighted and Unweighted



Discussion: Strongly Commensurate

If: the runtime of 𝒜2 is ෨𝑂 𝑇 𝑛 ⋅ log 𝑊max
𝑐  for some 𝑐 ∈ ℝ+ 

Then: 𝒜2 is a Strongly Commensurate Version of 𝒜1 

Question 3: What are the strongly commensurate versions of an 𝛼, 𝛽 -APASP 

algorithm for some 𝛼, 𝛽?

Partial Answer: +2-APASP algorithms of DHZ and +2𝑊1-APASP algorithms of CZ

Additive APASP: Weighted and Unweighted



Extended Additive APASP for Unweighted

Dor, Halperin and Zwick (1996): two +2 ⋅ 𝑘 + 1 -APASP 

 𝑑 𝑢, 𝑣 ≤ 𝛿 𝑢, 𝑣 + 2 ⋅ 𝑘 + 1

Two algorithms: For dense graphs with ෨𝑂(𝑛2+
1

3𝑘+2) runtime

                              For sparse graphs with ෨𝑂(𝑛2−
1

𝑘+2𝑚
1

𝑘+2) runtime

In total: ෨𝑂(min{𝑛2+
1

3𝑘+2, 𝑛2−
1

𝑘+2𝑚
1

𝑘+2}) runtime 

Additive APASP: Weighted and Unweighted



Naïve Strongly Commensurate Versions

For unweighted graphs: +2 ⋅ 𝑘 + 1 -APASP 

The same algorithm: +2 ⋅ 𝑘 + 1 ⋅ 𝑊max-APASP

No change in the algorithm, same runtime

Several changes:+2 ⋅ 𝑘 + 1 ⋅ 𝑊1-APASP

The runtime of both algorithms remains the same

Question 3: What are the strongly commensurate versions of an 𝛼, 𝛽 -APASP 

algorithm for some 𝛼, 𝛽?

Additive APASP: Weighted and Unweighted



Naïve Strongly Commensurate Versions

Additional Answer: +2 ⋅ 𝑘 + 1 -APASP algorithms of DHZ and “similar” +2 ⋅ (

)

𝑘

+ 1 ⋅ 𝑊max-APASP algorithms or +2 ⋅ 𝑘 + 1 ⋅ 𝑊1-APASP algorithms

Is it possible to do “better”?

Are there tighter weighted APASP algorithms which are strongly commensurate 

versions of  the +2 ⋅ 𝑘 + 1 -APASP algorithms of DHZ?

Additive APASP: Weighted and Unweighted



An Additive APASP With a “Local” Guarantee

Cohen and Zwick (1997): 

𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP 

 𝑑 𝑢, 𝑣 ≤ 𝑤 𝑃

Over all shortest paths 𝑃 between 𝑢 and 𝑣

When ∀𝑒∈𝐸: 𝑤 𝑒 = 1 then 

𝑘+1 

+2 σ 𝑊𝑖 = +2 ⋅ 𝑘 + 1

 𝑖=1 

Observation: 

𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP is a commensurate version of +2 ⋅ 𝑘 + 1 -APASP 

Additive APASP: Weighted and Unweighted

+2 ෍

𝑖=1

𝑘+1

𝑊𝑖 𝑃



An Additive APASP With a “Local” Guarantee

Are there strongly commensurate algorithms for these problems?

Only a single algorithm: For sparse graphs with ෨𝑂(𝑛2−
1

𝑘+2𝑚
1

𝑘+2) runtime

Nothing for dense graphs 

We present: 

𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP algorithm for dense graphs with ෨𝑂(𝑛2+

1

3𝑘+2) runtime

Question 3: What are the strongly commensurate versions of an 𝛼, 𝛽 -APASP 
algorithm for some 𝛼, 𝛽?

Additional answer to Q3: 

𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP and +2 ⋅ 𝑘 + 1 -APASP

Additive APASP: Weighted and Unweighted



Additive: Unweighted vs Weighted

Unweighted Runtime Ref Weighted Runtime Ref

+2 𝑛
3
2𝑚

1
2 DHZ96 +2𝑊1 𝑛

3
2𝑚

1
2 CZ97

+2 𝑛
7
3 DHZ96 +2𝑊1 𝑛

7
3 CZ97

+2 ⋅ 𝑘 + 1 𝑛2−
1

𝑘+2𝑚
1

𝑘+2 DHZ96 +2 ෍

𝑖=1

𝑘+1

𝑊𝑖 𝑛2−
1

𝑘+2𝑚
1

𝑘+2 CZ97

+2 ⋅ 𝑘 + 1 𝑛2+
1

3𝑘+2 DHZ96 +2 ෍

𝑖=1

𝑘+1

𝑊𝑖 𝑛2+
1

3𝑘+2 RS25

CZ97: Cohen and Zwick (1997)

DHZ96: Dor, Halperin and Zwick (1996)

RS25: Roditty and Sapir (2025)

Additive APASP: Weighted and Unweighted
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Hitting Sets

A universe of elements 𝒰 = 𝑢1, … , 𝑢𝑛

A collection of subsets: 𝑇1, 𝑇2, … , 𝑇ℓ

 𝑇𝑖 ⊆ 𝒰

A hitting set is a set 𝑆 ⊆ 𝒰 s.t. 𝑆 ∩ 𝑇𝑖 ≠ ∅ for all 1 ≤ 𝑖 ≤ ℓ

For example: 𝒰 = 𝑎, 𝑏, 𝑐, 𝑑

     𝑇1 = 𝑎, 𝑏, 𝑐 , 𝑇2 = 𝑏, 𝑐, 𝑑

     𝑆 = 𝑏, 𝑐  is a hitting set

     𝑆 = 𝑐  is a hitting set

       𝑻𝟏                     𝑻𝟐

𝒃𝒂 𝒅𝒄

Hitting Sets



Hitting Sets

How fast can we compute a hitting set?

Finding the smallest hitting set is NP-Hard!

Our usage: 𝑇𝑖 ≥ 𝑟,  ℓ = 𝑛

Aingworth, Chekuri, Indyk and Motwani (1996):

Lemma 1: A hitting set 𝑆 of size 𝑆 ∈ ෨𝑂
𝑛

𝑟
 can be computed in ෨𝑂 𝑛𝑟  runtime.

Hitting Sets



Hitting Sets for Graphs?

How do hitting sets relate to a graph 𝐺 = 𝑉, 𝐸 ?

Let 𝒰 = 𝑉

𝑇𝑣 = Γ 𝑣 = neighbours of 𝑣

Focus on high-degree vertices

 deg 𝑣 ≥ 𝑛𝛼 for some 𝛼 ∈ 0,1

𝑆 ∈ ෨𝑂
𝑛

𝑛𝛼 = ෨𝑂 𝑛1−𝛼

Hitting Sets



Pivots

For each 𝑣 ∈ 𝑉: Γ 𝑣 ∩ 𝑆 ≠ ∅ 

There exists a vertex in Γ 𝑣 ∩ 𝑆

Let 𝑝𝑆 𝑢  be the nearest to 𝑢 (by distance)

𝑝𝑆 𝑢  is the pivot of 𝑢, relatively to 𝑆

 𝐻 = 𝑢, 𝑝𝑆 𝑢  | 𝑢 ∈ 𝑉

𝐻 ∈ 𝑂 𝑛

𝑻𝒖

𝒖

𝒑𝑺 𝒖



Hitting Sets for APASP?

How do hitting sets relate to APASP?

One way to compute APSP: Invoke SSSP from all 𝑢 ∈ 𝑉

Yields precise distances (=APSP)

What is the issue?

𝑉  iterations of SSSP ⇒ ෨𝑂 𝑛𝑚  runtime

What if invoke SSSP only from a subset 𝑆 ⊆ 𝑉 of vertices?

The runtime: ෨𝑂 𝑆 ⋅ 𝑚

Hitting Sets



Hitting Sets for APASP?

On a high scale, the approach for APASP: Each vertex considers its neighbours Γ 𝑢

Invoke SSSP from a hitting set 𝑆 ⊆ 𝑉

For 𝑢, 𝑣 ∈ 𝑉: Estimate the distance through pivots

By the triangle inequality: 𝛿 𝑝𝑆 𝑢 , 𝑣 ≤ 𝛿 𝑢, 𝑝𝑆 𝑢 + 𝛿 𝑢, 𝑣

𝑑 𝑢, 𝑣 ≤ 𝛿 𝑢, 𝑝𝑆 𝑢 + 𝛿 𝑝𝑆 𝑢 , 𝑣 ≤ 𝛿 𝑢, 𝑣 + 2𝛿 𝑢, 𝑝𝑆 𝑢

𝑻𝒗𝑻𝒖

𝒗𝒖

𝒑𝑺 𝒖

Hitting Sets
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Base for Our Approach

Cohen and Zwick (1997): +2𝑊1-APASP 

Two algorithms: For dense graphs with ෨𝑂(𝑛
7

3) runtime

                              For sparse graphs with ෨𝑂(𝑛
3

2𝑚
1

2) runtime

Cohen and Zwick (1997): 

𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP 

Only one: For sparse graphs with ෨𝑂(𝑛2−
1

𝑘+2𝑚
1

𝑘+2) runtime

Additive +2𝑊1-APASP



Base for Our Approach

Our goal: Extend the +2𝑊1-APASP algorithm with ෨𝑂(𝑛
7

3) runtime

 𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP algorithm with ෨𝑂(𝑛2+

1

3𝑘+2) runtime

Present a simplified version: +2𝑊1-APASP algorithm of Cohen and Zwick

Toolkit: hitting-sets, pivots, SSSP invocations over smaller sets of edges

Additive +2𝑊1-APASP



Warmup: +2𝑊1-APASP

An undirected weighted graph 𝐺 = 𝑉, 𝐸, 𝑤

Γ 𝑢, 𝑛𝛽  = 𝑛𝛽 nearest neighbours of 𝑢, 𝛽 ∈ 0,1

Each vertex 𝑢 ∈ 𝑉 considers 𝑇𝑢 = Γ 𝑢, 𝑛𝛽

Find a hitting set 𝑆1 for Γ 𝑢, 𝑛𝛽  | 𝑢 ∈ 𝑉

Lemma 1: A hitting set 𝑆 of size 𝑆 ∈ ෨𝑂
𝑛

𝑟
 can be computed in ෨𝑂 𝑛𝑟  runtime.

In our case: 𝑟 = 𝑛𝛽

𝑆1 ∈ ෨𝑂 𝑛1−𝛽

Additive +2𝑊1-APASP



Warmup: +2𝑊1-APASP

Γ 𝑢, 𝑛𝛽+𝛾  = 𝑛𝛽+𝛾 nearest neighbours of 𝑢, 𝛾 ∈ 0,1

Consider again 𝑇𝑢 = Γ 𝑢, 𝑛𝛽+𝛾

Find a hitting set 𝑆2 for Γ 𝑢, 𝑛𝛽+𝛾  | 𝑢 ∈ 𝑉

𝑆2 ∈ ෨𝑂 𝑛1−𝛽−𝛾
𝒗𝟏

𝒖

𝒗𝟐

𝒗𝑛𝜷

𝒗𝒏𝜷+𝟏

𝒗𝒏𝜷+𝜸

𝒑𝟏 𝒖

𝒑𝟐 𝒖
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Warmup: +2𝑊1-APASP

Each vertex considers edges to nearest neighbours

 𝐸1 𝑢 = 𝑢, 𝑣  | 𝑣 ∈ Γ 𝑢, 𝑛𝛽

 𝐸1 = ڂ 𝐸1 𝑢

 𝑢∈𝑉 

 𝐸2 𝑢 = 𝑢, 𝑣  | 𝑣 ∈ Γ 𝑢, 𝑛𝛽+𝛾

 𝐸2 = ڂ 𝐸2 𝑢

 𝑢∈𝑉 

𝐸1 = 𝑛1+𝛽 

𝐸2 = 𝑛1+𝛽+𝛾 

𝒗𝟏

𝒖

𝒗𝟐

𝒗𝑛𝜷

𝒗𝒏𝜷+𝟏

𝒗𝒏𝜷+𝜸

𝒑𝟏 𝒖

𝒑𝟐 𝒖

Additive +2𝑊1-APASP



+2𝑊1-APASP Algorithm Overview

1. Find 𝑝1 𝑢  (resp. 𝑝2 𝑢 ) for every 𝑢 ∈ 𝑉

2. Set 𝑑 𝑢, 𝑝1 𝑢 = 𝛿 𝑢, 𝑝1 𝑢  (resp. 𝑑 𝑢, 𝑝2 𝑢 = 𝛿 𝑢, 𝑝2 𝑢 )

3. For 𝑠 ∈ 𝑆2: Invoke SSSP over 𝐸 and update 𝑑

4. For 𝑠 ∈ 𝑆1: Invoke SSSP over 𝐸2 and update 𝑑

5. For 𝑢 ∈ 𝑉: Invoke SSSP over 𝐸1 ∪ 𝑢, 𝑣 𝑣 ∈ 𝑉 ∪ 𝑆2 × 𝑉 ∪ 𝐻 and update 𝑑

෨𝑂 𝑚

෨𝑂 𝑆2 ⋅ 𝐸 = ෨𝑂 𝑚𝑛1−𝛽−𝛾

෨𝑂 𝑆1 ⋅ 𝐸2 = ෨𝑂 𝑛1−𝛽 ⋅ 𝑛1+𝛽+𝛾 = ෨𝑂 𝑛2+𝛾

෨𝑂 𝑉 ⋅ 𝐸1 + 𝑉 ⋅ 𝑆2 = ෨𝑂 𝑛 ⋅ 𝑛1+𝛽 + 𝑛 ⋅ 𝑛1−𝛽−𝛾 = ෨𝑂 𝑛2+𝛽 + 𝑛3−𝛽−𝛾

Total: ෨𝑂 𝑛2+𝛽 + 𝑛2+𝛾 + 𝑛3−𝛽−𝛾 ⇒ 𝛽 = 𝛾 =
1

3
⇒ ෨𝑂 𝑛

7
3
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+2𝑊1-APASP Algorithm Correctness

Let 𝑢, 𝑣 ∈ 𝑉

Our aim: 𝑑 𝑢, 𝑣 ∈ 𝛿 𝑢, 𝑣 , 𝛿 𝑢, 𝑣 + 2𝑊1

Distinguish between three possible cases:

1.  𝑢 𝑣 ⊆ 𝐸1

2.  𝑢 𝑣 ⊆ 𝐸2 yet 𝑢 𝑣 ⊈ 𝐸1

3.  𝑢 𝑣 ⊈ 𝐸2

Additive +2𝑊1-APASP



Case 1

𝑢 𝑣 ⊆ 𝐸1

𝑬𝟏

𝒗𝒖

Additive +2𝑊1-APASP



+2𝑊1-APASP Algorithm Overview

1. Find 𝑝1 𝑢  (resp. 𝑝2 𝑢 ) for every 𝑢 ∈ 𝑉

2. Set 𝑑 𝑢, 𝑝1 𝑢 = 𝛿 𝑢, 𝑝1 𝑢  (resp. 𝑑 𝑢, 𝑝2 𝑢 = 𝛿 𝑢, 𝑝2 𝑢 )

3. For 𝑠 ∈ 𝑆2: Invoke SSSP over 𝐸 and update 𝑑

4. For 𝑠 ∈ 𝑆1: Invoke SSSP over 𝐸2 and update 𝑑

5. For 𝑢 ∈ 𝑉: Invoke SSSP over 𝐸1 ∪ 𝑢, 𝑣 𝑣 ∈ 𝑉 ∪ 𝑆2 × 𝑉 ∪ 𝐻 and update 𝑑

Additive +2𝑊1-APASP



Case 1

𝑢 𝑣 ⊆ 𝐸1

𝑑 𝑢, 𝑣 = 𝛿 𝑢, 𝑣

𝑬𝟏

𝒗𝒖

Additive +2𝑊1-APASP



+2𝑊1-APASP Algorithm Correctness

Let 𝑢, 𝑣 ∈ 𝑉

Our aim: 𝑑 𝑢, 𝑣 ∈ 𝛿 𝑢, 𝑣 , 𝛿 𝑢, 𝑣 + 2𝑊1

Distinguish between three possible cases:

1.  𝑢 𝑣 ⊆ 𝐸1

2.  𝑢 𝑣 ⊆ 𝐸2 yet 𝑢 𝑣 ⊈ 𝐸1

3.  𝑢 𝑣 ⊈ 𝐸2

Additive +2𝑊1-APASP



Case 2

𝑢 𝑣 ⊆ 𝐸2 yet 𝑢 𝑣 ⊈ 𝐸1

Let 𝑦 be such 𝑥, 𝑦 ∉ 𝐸1, assume 𝑦 is nearest to 𝑣

𝑬𝟏

𝒗𝒖 𝒙 𝒚

𝒑𝟏 𝒚

Additive +2𝑊1-APASP



+2𝑊1-APASP Algorithm Overview

1. Find 𝑝1 𝑢  (resp. 𝑝2 𝑢 ) for every 𝑢 ∈ 𝑉

2. Set 𝑑 𝑢, 𝑝1 𝑢 = 𝛿 𝑢, 𝑝1 𝑢  (resp. 𝑑 𝑢, 𝑝2 𝑢 = 𝛿 𝑢, 𝑝2 𝑢 )

3. For 𝑠 ∈ 𝑆2: Invoke SSSP over 𝐸 and update 𝑑

4. For 𝑠 ∈ 𝑆1: Invoke SSSP over 𝐸2 and update 𝑑

5. For 𝑢 ∈ 𝑉: Invoke SSSP over 𝐸1 ∪ 𝑢, 𝑣 𝑣 ∈ 𝑉 ∪ 𝑆2 × 𝑉 ∪ 𝐻 and update 𝑑

Additive +2𝑊1-APASP



Case 2

𝑢 𝑣 ⊆ 𝐸2 yet 𝑢 𝑣 ⊈ 𝐸1

Let 𝑦 be such 𝑥, 𝑦 ∉ 𝐸1, assume 𝑦 is nearest to 𝑣

 𝑑 𝑝1 𝑦 , 𝑢 = 𝛿 𝑝1 𝑦 , 𝑢 ≤ 𝛿 𝑢, 𝑦 + 𝛿 𝑦, 𝑝1 𝑦

𝑬𝟏

𝒗𝒖 𝒙 𝒚

𝒑𝟏 𝒚
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+2𝑊1-APASP Algorithm Overview

1. Find 𝑝1 𝑢  (resp. 𝑝2 𝑢 ) for every 𝑢 ∈ 𝑉

2. Set 𝑑 𝑢, 𝑝1 𝑢 = 𝛿 𝑢, 𝑝1 𝑢  (resp. 𝑑 𝑢, 𝑝2 𝑢 = 𝛿 𝑢, 𝑝2 𝑢 )

3. For 𝑠 ∈ 𝑆2: Invoke SSSP over 𝐸 and update 𝑑

4. For 𝑠 ∈ 𝑆1: Invoke SSSP over 𝐸2 and update 𝑑

5. For 𝑢 ∈ 𝑉: Invoke SSSP over 𝐸1 ∪ 𝑢, 𝑣 𝑣 ∈ 𝑉 ∪ 𝑆2 × 𝑉 ∪ 𝐻 and update 𝑑

Additive +2𝑊1-APASP



Case 2

𝑢 𝑣 ⊆ 𝐸2 yet 𝑢 𝑣 ⊈ 𝐸1

Let 𝑦 be such 𝑥, 𝑦 ∉ 𝐸1, assume 𝑦 is nearest to 𝑣

 𝑑 𝑝1 𝑦 , 𝑢 = 𝛿 𝑝1 𝑦 , 𝑢 ≤ 𝛿 𝑢, 𝑦 + 𝛿 𝑦, 𝑝1 𝑦

 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑝1 𝑦 + 𝑑 𝑝1 𝑦 , 𝑦 + 𝛿 𝑦, 𝑣 ≤ 𝛿 𝑢, 𝑦 + 2𝛿 𝑦, 𝑝1 𝑦 + 𝛿 𝑦, 𝑣
≤ 𝛿 𝑢, 𝑣 + 2𝑤 𝑥, 𝑦 ≤ 𝛿 𝑢, 𝑣 + 2𝑊1 𝑢, 𝑣

𝑬𝟏

𝒗𝒖 𝒙 𝒚

𝒑𝟏 𝒚

Additive +2𝑊1-APASP



+2𝑊1-APASP Algorithm Correctness

Let 𝑢, 𝑣 ∈ 𝑉

Our aim: 𝑑 𝑢, 𝑣 ∈ 𝛿 𝑢, 𝑣 , 𝛿 𝑢, 𝑣 + 2𝑊1

Distinguish between three possible cases:

1.  𝑢 𝑣 ⊆ 𝐸1

2.  𝑢 𝑣 ⊆ 𝐸2 yet 𝑢 𝑣 ⊈ 𝐸1

3.  𝑢 𝑣 ⊈ 𝐸2

Additive +2𝑊1-APASP



Case 3

𝑢 𝑣 ⊈ 𝐸2

An arbitrary edge 𝑥, 𝑦 ∉ 𝐸2

𝑬𝟐

𝒗𝒖 𝒙 𝒚

𝒑𝟐 𝒚

Additive +2𝑊1-APASP



+2𝑊1-APASP Algorithm Overview

1. Find 𝑝1 𝑢  (resp. 𝑝2 𝑢 ) for every 𝑢 ∈ 𝑉

2. Set 𝑑 𝑢, 𝑝1 𝑢 = 𝛿 𝑢, 𝑝1 𝑢  (resp. 𝑑 𝑢, 𝑝2 𝑢 = 𝛿 𝑢, 𝑝2 𝑢 )

3. For 𝑠 ∈ 𝑆2: Invoke SSSP over 𝐸 and update 𝑑

4. For 𝑠 ∈ 𝑆1: Invoke SSSP over 𝐸2 and update 𝑑

5. For 𝑢 ∈ 𝑉: Invoke SSSP over 𝐸1 ∪ 𝑢, 𝑣 𝑣 ∈ 𝑉 ∪ 𝑆2 × 𝑉 ∪ 𝐻 and update 𝑑

Additive +2𝑊1-APASP



Case 3

𝑢 𝑣 ⊈ 𝐸2

An arbitrary edge 𝑥, 𝑦 ∉ 𝐸2

𝑑 𝑝2 𝑦 , 𝑢 = 𝛿 𝑝2 𝑦 , 𝑢  and 𝑑 𝑝2 𝑦 , 𝑣 = 𝛿 𝑝2 𝑦 , 𝑣

 

𝑬𝟐

𝒗𝒖 𝒙 𝒚

𝒑𝟐 𝒚

Additive +2𝑊1-APASP



+2𝑊1-APASP Algorithm Overview

1. Find 𝑝1 𝑢  (resp. 𝑝2 𝑢 ) for every 𝑢 ∈ 𝑉

2. Set 𝑑 𝑢, 𝑝1 𝑢 = 𝛿 𝑢, 𝑝1 𝑢  (resp. 𝑑 𝑢, 𝑝2 𝑢 = 𝛿 𝑢, 𝑝2 𝑢 )

3. For 𝑠 ∈ 𝑆2: Invoke SSSP over 𝐸 and update 𝑑

4. For 𝑠 ∈ 𝑆1: Invoke SSSP over 𝐸2 and update 𝑑

5. For 𝑢 ∈ 𝑉: Invoke SSSP over 𝐸1 ∪ 𝑢, 𝑣 𝑣 ∈ 𝑉 ∪ 𝑆2 × 𝑉 ∪ 𝐻 and update 𝑑

Additive +2𝑊1-APASP



Case 3

𝑢 𝑣 ⊈ 𝐸2

An arbitrary edge 𝑥, 𝑦 ∉ 𝐸2

𝑑 𝑝2 𝑦 , 𝑢 = 𝛿 𝑝2 𝑦 , 𝑢  and 𝑑 𝑝2 𝑦 , 𝑣 = 𝛿 𝑝2 𝑦 , 𝑣

 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑝2 𝑦 + 𝑑 𝑝2 𝑦 , 𝑣 = 𝛿 𝑢, 𝑝2 𝑦 + 𝛿 𝑣, 𝑝2 𝑦 ≤ 𝛿 𝑢, 𝑦
+ 2𝛿 𝑦, 𝑝2 𝑦 + 𝛿 𝑦, 𝑣 ≤ 𝛿 𝑢, 𝑣 + 2𝑤 𝑥, 𝑦 ≤ 𝛿 𝑢, 𝑣 + 2𝑊1 𝑢, 𝑣

𝑬𝟐

𝒗𝒖 𝒙 𝒚

𝒑𝟐 𝒚

Additive +2𝑊1-APASP



+2𝑊1-APASP Algorithm Correctness

Let 𝑢, 𝑣 ∈ 𝑉

Our aim: 𝑑 𝑢, 𝑣 ∈ 𝛿 𝑢, 𝑣 , 𝛿 𝑢, 𝑣 + 2𝑊1

Distinguish between three possible cases:

1.  𝑢 𝑣 ⊆ 𝐸1

2.  𝑢 𝑣 ⊆ 𝐸2 yet 𝑢 𝑣 ⊈ 𝐸1

3.  𝑢 𝑣 ⊈ 𝐸2

Conclusion: This algorithm computes a +2𝑊1-APASP and requires ෨𝑂(𝑛
7

3) runtime.

Additive +2𝑊1-APASP



Plan of Talk

o APSP and APASP

o Additive APASP: Weighted and Unweighted

o Hitting Sets

o Additive +2𝑊1-APASP

o Additive 

𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP

o Additional Results

o Further Directions



Only Two Levels?

Cohen and Zwick’s +2𝑊1-APASP algorithm: 𝛽, 𝛾 ∈ 0,1

They considered: Γ 𝑢, 𝑛𝛽  and Γ 𝑢, 𝑛𝛽+𝛾

Hitting sets: 𝑆1 and 𝑆2

𝑆1 ∈ ෨𝑂 𝑛1−𝛽 , 𝑆2 ∈ ෨𝑂 𝑛1−𝛽−𝛾

Edges to nearest neighbours: 𝐸1 and 𝐸2

𝐸1 ∈ 𝑂 𝑛1+𝛽 , 𝐸2 ∈ 𝑂 𝑛1+𝛽+𝛾

What if we add more levels?

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP



Adding More Levels

Simply 𝑘 ∈ ℕ levels?

We skipped a single level (𝑘 = 1)?

For 𝑘 = 1 we still get a +2𝑊1-APASP

The runtime will be ෨𝑂 𝑛2+𝛽 + 𝑛3−𝛽

Select 𝛽 =
1

2

The runtime becomes ෨𝑂(𝑛
5

2)

Worse than ෨𝑂(𝑛
7

3)

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP



Adding More Levels

What about 𝑘 = 3?

The runtime will be ෨𝑂 𝑛2+𝛽 + 𝑛2+𝛾 + 𝑛2+𝛿 + 𝑛3−𝛽−𝛾−𝛿

Select 𝛽 =
1

4

The runtime becomes ෨𝑂(𝑛
9

4)

But we compute a +2𝑊1 + 2𝑊2-APASP

Weaker guarantee than +2𝑊1-APASP

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP



Adding More Levels

For 𝑘 = 4: +2𝑊1 + 2𝑊2-APASP in ෨𝑂(𝑛
11

5 ) runtime

Better than 𝑘 = 3: +2𝑊1 + 2𝑊2-APASP in ෨𝑂(𝑛
9

4) runtime

Not every 𝑘 ∈ ℕ is “useful”

3𝑘 + 2 levels

Parameters: 𝛽1, 𝛽2, … , 𝛽3𝑘+2  ∈ 0,1

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP



3𝑘 + 2 Levels

𝛼𝑗 =

 𝑗 

σ 𝛽𝑖

 𝑖=1 

Consider Γ 𝑢, 𝑛𝛼𝑗  for 1 ≤ 𝑗 ≤ 3𝑘 + 2

Hitting sets: 𝑆𝑗, 𝑆𝑗 ∈ ෨𝑂 𝑛1−𝛼𝑗

Edges to nearest neighbours: 𝐸𝑗, 𝐸𝑗 ∈ 𝑂 𝑛1+𝛼𝑗

Similar SSSP invocations

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP



SSSP Invocations

Which edges should we consider in each SSSP invocation?

Assume 𝑢 ∈ 𝑆𝑖

𝑢 will “see” 𝐸𝑖+1

We need to have 𝑑 𝑝𝑖+1 𝑦 , 𝑢

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP

𝑬𝒊+𝟏

𝒗𝒖 𝒙 𝒚

𝒑𝒊+𝟏 𝒚



SSSP Invocations

Let Δ 𝑢 𝑣  be an upper bound for 𝑑 𝑢, 𝑣 − 𝛿 𝑢, 𝑣

Here: Δ 𝑢 𝑣 = Δ 𝑢 𝑥 − 𝑦 𝑝𝑖+1 𝑦 + 2𝑤 𝑥, 𝑦

Recursively: 𝑝𝑖+1 𝑦 ∈ 𝑆𝑖+1…

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP

𝑬𝒊+𝟏

𝒗𝒖 𝒙 𝒚

𝒑𝒊+𝟏 𝒚



Recursive Upper Bound for the Estimation

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP

𝑬𝒊+𝟏

𝒗𝒖 𝒙 𝒚

𝒑𝒊+𝟏 𝒚

𝑬𝒊+𝟐

ෝ𝒙 𝒖𝒙𝒚 ෝ𝒚𝒑𝒊+𝟏 𝒚

𝒑𝒊+𝟐 ෝ𝒚



Recursive Upper Bound for the Estimation

Trivia: Does this guarantee an upper-bound that depends on 𝑊1, 𝑊2, … , 𝑊𝑘+1?

Answer: Almost…

How can we guarantee that the same 𝑊𝑖 is not used more than once? 

Instead of 𝑝𝑖+2 ො𝑦  we need to consider 𝑝𝑖∗ ො𝑦

Where 𝑖∗ ≥ 𝑖 + 2 is the largest index

s.t. 𝛿 ො𝑦, 𝑝𝑖∗ ො𝑦 ≤ 𝑤 ො𝑥, ො𝑦

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP

𝑬𝒊+𝟐

ෝ𝒙 𝒖𝒙𝒚 ෝ𝒚𝒑𝒊+𝟏 𝒚

𝒑𝒊+𝟐 ෝ𝒚𝒑𝒊∗ ෝ𝒚



A Word About Runtime

To compute the runtime:

1. List exactly the edges being used

2. Enumerate the number of recursive calls

Total runtime: ෨𝑂(𝑛2+
1

3𝑘+2)

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP

𝑬𝒊+𝟐

ෝ𝒙 𝒖𝒙𝒚 ෝ𝒚𝒑𝒊+𝟏 𝒚

𝒑𝒊+𝟐 ෝ𝒚𝒑𝒊∗ ෝ𝒚



Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP

Cohen and Zwick’s +2𝑊1-APASP algorithm

Runtime: ෨𝑂(𝑛
7

3) 

Our result: 

𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP algorithm

Runtime: ෨𝑂(𝑛2+
1

3𝑘+2)

(Only the runtime for the base case differs…)

Additive +2 σ𝑖=1
𝑘+1 𝑊𝑖-APASP



Plan of Talk

o APSP and APASP

o Additive APASP: Weighted and Unweighted

o Hitting Sets

o Additive +2𝑊1-APASP

o Additive 

𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP

o Additional Results

o Further Directions



Nearly Additive APASP

Purely additive 𝛼, 𝛽 -APASP ⇒ 𝛼 = 1

Nearly additive: 𝛼 = 1 + 𝜀, for some small 𝜀 > 0

Cohen and Zwick’s algorithm actually computed a +2 min 2𝑊1, 4𝑊2 -APASP

Saha and Ye (2024) computed a 1 + 𝜀, 2𝑊1 -APASP 

Their runtime: ෨𝑂
1

𝜀

𝑂 1
⋅ 𝑛2.15135313 ⋅ log 𝑊

In the same runtime, we compute a 1 + 𝜀, 2 min 2𝑊1, 4𝑊2 -APASP 

Additional Results



Multiplicative APASP

Cohen and Zwick (1997), Baswana and Kavitha (2010), Kavitha (2012):

2-APASP,
7

3
-APASP,

5

2
-APASP, 3-APASP

Roditty and Akav (2021) extended these specific approximations:

3ℓ+4

ℓ+2
-APASP

We consider a similar family:

3ℓ+4

ℓ+2
+ 𝜀 -APASP

Additional Results



Tradeoffs

In general:

𝛼1, 𝛽1 -APASP algorithm 𝒜1 and an 𝛼2, 𝛽2 -APASP algorithm 𝒜2 

Running both (assuming they have the same runtime…):

ቊ
𝑑 𝑢, 𝑣 ≤ 𝛼1 ⋅ 𝛿 𝑢, 𝑣 + 𝛽1

𝑑 𝑢, 𝑣 ≤ 𝛼2 ⋅ 𝛿 𝑢, 𝑣 + 𝛽2

⇓
𝑑 𝑢, 𝑣 ≤

𝛼1 + 𝛼2

2
⋅ 𝛿 𝑢, 𝑣 +

𝛽1 + 𝛽2

2

Additional Results



Tradeoffs

Running both yields a
𝛼1+𝛼2

2
,

𝛽1+𝛽2

2
-APASP algorithm 𝒜3

Same runtime as 𝒜1, 𝒜2 

Any type of weighted average:

𝑑 𝑢, 𝑣 ≤
𝛼1 ⋅ 𝛾 + 𝛼2 ⋅ 𝜏

𝛾 + 𝜏
⋅ 𝛿 𝑢, 𝑣 +

𝛽1 ⋅ 𝛾 + 𝛽2 ⋅ 𝜏

𝛾 + 𝜏

A
𝛼1⋅𝛾+𝛼2⋅𝜏

𝛾+𝜏
,

𝛽1⋅𝛾+𝛽2⋅𝜏

𝛾+𝜏
-APASP algorithm

Additional Results



Tradeoffs: Concrete Examples

Our algorithm:

 𝑘+1

+2 σ 𝑊𝑖

 𝑖=1
-APASP algorithm with ෨𝑂(𝑛2+

1

3𝑘+2) runtime

Akav and Roditty (2021):
3ℓ+4

ℓ+2
-APASP algorithm with ෨𝑂(𝑛2−

3

ℓ+2𝑚
2

ℓ+2 + 𝑛2) runtime

For 𝑚 = 𝑛2 and ℓ = 3𝑘 it is a
9𝑘+4

3𝑘+2
-APASP algorithm with ෨𝑂(𝑛2+

1

3𝑘+2) runtime

Running both:
9𝑘+4 ⋅𝛾+ 3𝑘+2 ⋅𝜏

𝛾+𝜏
,

2𝜏

𝛾+𝜏
⋅

 𝑘+1 

σ 𝑊𝑖

 𝑖=1 
-APASP 

For example:
6𝑘+3

3𝑘+2
,

 𝑘+1 

σ 𝑊𝑖

 𝑖=1 
-APASP with ෨𝑂(𝑛2+

1

3𝑘+2) runtime

Additional Results
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Further Directions

Runtime gap between the runtimes: base case (𝑘 = 0) and general case

෨𝑂(𝑛
7

3) and ෨𝑂(𝑛2+
1

3𝑘+2)

The above holds as well for the unweighted setting

Strongly Commensurate: Other approaches except 𝑊𝑖?

Additive to Multiplicative? +2𝑊2-APASP ⇒ 2-APASP

Further Directions
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The End (for today)

To Be Continued
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