Additive, Near-Additive, and Multiplicative Approximations for APSP in Weighted Undirected Graphs: Trade-offs and Algorithms

Liam Roditty, Bar-Ilan University, Israel Ariel Sapir, Bar-Ilan University, Israel

Summer Seminar on AGT 2025, Ben-Gurion University, Israel

Plan of Talk

- APSP and APASP
- Additive APASP: Weighted and Unweighted
- Hitting Sets
- \circ Additive $+2W_1$ -APASP

o Additive
$$+2\sum_{i=1}^{k+1} W_i$$
-APASP

- Additional Results
- Further Directions

Distances in Graphs

G = (V, E, w) weighted undirected graph

How do we define a distance?

For a path
$$P: w(P) = \sum_{e \in P} w(e)$$

Let $u, v \in V$

Distance: $\delta(u, v) = \min_{P} w(P)$, over all P from u to v

For unweighted graphs: w(P) = the number of edges in P (assume w(e) = 1)

Problem(s) Definition

Common Input: G = (V, E, w) weighted undirected graph.

Several problems:	Single Source Shortest Paths (SSSP)	Multi Source Shortest Paths (MSSP)	All Pairs Shortest Paths (APSP)
Additional Input:	A single source $s \in V$	A subset of sources $S \subseteq V$	None ($S = V$)
Output:	Distances from s to all $v \in V$	Distances from any $s \in S$ to any $v \in V$	Distances from all $u \in V$ to all $v \in V$

Our focus: APSP, the others – utilized as a tool

APSP Conjecture

$$|V|=n$$
, $|E|=m$.

How fast can we compute SSSP?

O Dijkstra (1956): $O(m + n \cdot \log n)$

How fast can we compute APSP?

- Floyd-Warshall (1962): $O(n^3)$
- O Johnson (1977): $O(nm + n^2 \cdot \log n)$
- O ...
- O Williams (2014): $O\left(\frac{n^3}{2^{\sqrt{\Omega(\log n)}}}\right)$

None strictly better than n^3 !

APSP Conjecture

Question 1: Is there an $\varepsilon > 0$ for which APSP can be computed in $\tilde{O}(n^{3-\varepsilon})$?

APSP Conjecture: There exists no such ε !

Question 2: Can **A**ll **P**airs **A**pproximated **S**hortest **P**aths (APASP) be computed faster than n^3 ?

Short Answer: Yes! Many approximations in $\tilde{O}(n^{3-\varepsilon})$

How do we define an approximation?

All-Pairs Approximate Shortest Paths

For example: $\delta(a, c) = 8$,

$$\delta(b,d) = 8.$$

Estimated distance: d[u, v]

$$(\alpha, \beta)$$
-APASP: $d[u, v] \in [\delta(u, v), \alpha \cdot \delta(u, v) + \beta]$

d[u, v] = w(P), for some P between u and v

For example:
$$\alpha = 1, \beta = 1 \Rightarrow (1,1)$$
-APASP

$$d[a,c]=9$$
,

$$d[b,d] = 8.$$

Major Approximation Categories

 (α, β) -APASP: $d[u, v] \in [\delta(u, v), \alpha \cdot \delta(u, v) + \beta]$

Multiplicative α -APASP: $\beta = 0$

Additive $+\beta$ -APASP: $\alpha = 1$

For small $\varepsilon > 0$: Nearly-Additive $(1 + \varepsilon, \beta)$ -APASP

Which is better?

Our Setting

Directed? Undirected?

Unweighted? Weighted?

Negative Weights? Non-negative weights?

Our focus: ↑

Plan of Talk

- APSP and APASP
- Additive APASP: Weighted and Unweighted
- Hitting Sets
- \circ Additive $+2W_1$ -APASP

$$k+1$$

- o Additive $+2\sum_{i=1}^{N} W_i$ -APASP
- Additional Results
- Further Directions

Known Additive APASP for Unweighted

Dor, Halperin and Zwick (1996): +2-APASP

$$d[u,v] \in [\delta(u,v),\delta(u,v)+2]$$

Two algorithms: For dense graphs with $\tilde{O}(n^{\frac{7}{3}})$ runtime

For sparse graphs with $\tilde{O}(n^{\frac{3}{2}}m^{\frac{1}{2}})$ runtime

In total: $\tilde{O}(\min\{n^{\frac{7}{3}}, n^{\frac{3}{2}}m^{\frac{1}{2}}\})$ runtime

Strictly less than n^3

Observation: Weighted graphs ⇒ Weights can be scaled

Multiply all weights by any $c \in \mathbb{R}^+$: $w'(u, v) = c \cdot w(u, v)$

Shortest paths will remain shortest path

The distance $\delta'(u, v) = c \cdot \delta(u, v)$

We may assume $\forall_{e \in E} : w(e) \ge 1$

Question 3: Can a weighted $+\beta$ -APASP have a constant β ?

For example: +2-APSP? +4-APASP?

Short Answer: Yes, but it is equivalent to exact APSP.

Question 3: Can a weighted $+\beta$ -APASP have a constant β ?

Short Answer: Yes, but it is equivalent to exact APSP.

Scale the weights: What if
$$c = \beta + \varepsilon$$
?
$$d'[u,v] \in [\delta'(u,v),\delta'(u,v)+\beta]$$

$$\psi$$

$$w(e) \geq \beta + \varepsilon$$

$$\psi$$

$$d'[u,v] = \delta'(u,v)$$
Exact APSP: $d[u,v] = \frac{d'[u,v]}{c} = \frac{\delta'(u,v)}{c} = \delta(u,v)$

 β can depend somehow on $w: E \to \mathbb{R}$

For example: $W_{\text{max}} = \max w(e)$

Unweighted: +2-APASP

Weighted: $+2W_{\text{max}}$ -APASP

For example: $d[a, c] \in [8,20]006$

Is it a "good" guarantee?

Better definition?

Let u~v be shortest path between u and v

 $W_i(u \sim v)$ is the weight of the i^{th} heaviest edge

For example:
$$W_1(a \sim c) = 6$$
,

$$W_2(b \sim d) = 2.$$

$$+f(W_1,\dots,W_k)\text{-APASP:}$$

$$d[u,v] \leq w(P) + f\big(W_1(P),\dots,W_k(P)\big)$$

$$6$$
 Over all shortest paths P between u and v
$$For example: +2W_1\text{-APASP:}$$

$$d[u,v] \leq w(P) + 2W_1(P)$$

$$+2W_1 + 2W_2\text{-APASP:}$$

$$d[u,v] \leq w(P) + 2W_1(P) + 2W_2(P)$$

The guarantee for d[u, v] is "local" and not "global"

An Additive APASP With a "Local" Guarantee

Cohen and Zwick (1997): $+2W_1$ -APASP

$$\delta(u, v) \le d[u, v] \le w(P) + 2W_1(P)$$

Two algorithms: For dense graphs with $\tilde{O}(n^{\frac{7}{3}})$ runtime

For sparse graphs with $\tilde{O}(n^{\frac{3}{2}}m^{\frac{1}{2}})$ runtime

In total: $\tilde{O}(\min\{n^{\frac{7}{3}}, n^{\frac{3}{2}}m^{\frac{1}{2}}\})$ runtime

The same runtime as the unweighted setting!

Discussion: Commensurate

 (α, β) -APASP for unweighted

$$d[u, v] \le \delta(u, v) + \beta$$
$$d[u, v] \le w(P) + \beta$$

Over all shortest paths P between u and v

A weighted version of this?

Recall G = (V, E, w) and let $f(\beta, G, P)$ be a function

Consider an
$$(\alpha, f(\beta, G, P))$$
-APASP for weighted
$$d[u, v] \leq w(P) + f(\beta, G, P)$$

Discussion: Commensurate

```
Unweighted: d[u, v] \leq w(P) + \beta
Weighted: d[u, v] \le w(P) + f(\beta, G, P)
If: when \forall_{e \in E}: w(e) = 1 \Rightarrow f(\beta, G, P) = \beta
Then: (\alpha, f(\beta, G, P))-APASP is a Commensurate Version of (\alpha, \beta)-APASP
                                                                                                          3
                                                    f(\beta, G, P) = \beta W_{\text{max}}
Examples: +2 and +2W_{max}
                                                                                                9999
                                                    f(\beta, G, P) = \beta W_1
               +2 and +2W_1
                                                   f(\beta, G, P) = \frac{\beta}{2}(W_1 + W_2)
               +2 and +W_1 + W_2
```

Discussion: Strongly Commensurate

Problems can be commensurate

What if their algorithms are not of the same "hardness"?

We need to consider the runtimes

 \mathcal{A}_1 algorithm for unweighted (α, β) -APASP with a runtime T(n)

 \mathcal{A}_2 algorithm for a commensurate $(\alpha, f(\beta, G, P))$ -APASP

Discussion: Strongly Commensurate

If: the runtime of \mathcal{A}_2 is $\tilde{O}(T(n) \cdot (\log W_{\max})^c)$ for some $c \in \mathbb{R}^+$

Then: \mathcal{A}_2 is a Strongly Commensurate Version of \mathcal{A}_1

Question 3: What are the strongly commensurate versions of an (α, β) -APASP algorithm for some α, β ?

Partial Answer: +2-APASP algorithms of DHZ and $+2W_1$ -APASP algorithms of CZ

Extended Additive APASP for Unweighted

Dor, Halperin and Zwick (1996): two $+2 \cdot (k+1)$ -APASP

$$d[u, v] \le \delta(u, v) + 2 \cdot (k+1)$$

Two algorithms: For dense graphs with $\tilde{O}(n^{2+\frac{1}{3k+2}})$ runtime

For sparse graphs with $\tilde{O}(n^{2-\frac{1}{k+2}}m^{\frac{1}{k+2}})$ runtime

In total: $\tilde{O}(\min\{n^{2+\frac{1}{3k+2}}, n^{2-\frac{1}{k+2}}m^{\frac{1}{k+2}}\})$ runtime

Naïve Strongly Commensurate Versions

For unweighted graphs: $+2 \cdot (k+1)$ -APASP

The same algorithm: $+2 \cdot (k+1) \cdot W_{\text{max}}$ -APASP

No change in the algorithm, same runtime

Several changes: $+2 \cdot (k+1) \cdot W_1$ -APASP

The runtime of both algorithms remains the same

Question 3: What are the strongly commensurate versions of an (α, β) -APASP algorithm for some α, β ?

Naïve Strongly Commensurate Versions

Additional Answer: $+2 \cdot (k+1)$ -APASP algorithms of DHZ and "similar" $+2 \cdot (k+1) \cdot W_{\text{max}}$ -APASP algorithms or $+2 \cdot (k+1) \cdot W_1$ -APASP algorithms

Is it possible to do "better"?

Are there tighter weighted APASP algorithms which are strongly commensurate versions of the $+2 \cdot (k+1)$ -APASP algorithms of DHZ?

An Additive APASP With a "Local" Guarantee

Cohen and Zwick (1997):
$$+2\sum_{i=1}^{k+1} W_i$$
-APASP

$$d[u, v] \le w(P) + 2\sum_{i=1}^{k+1} W_i(P)$$

Over all shortest paths P between u and v

When
$$\forall_{e \in E} : w(e) = 1$$
 then $+2\sum_{i=1}^{k+1} W_i = +2 \cdot (k+1)$

Observation: $+2\sum_{i=1}^{k+1}W_i$ -APASP is a commensurate version of $+2\cdot(k+1)$ -APASP

An Additive APASP With a "Local" Guarantee

Are there strongly commensurate algorithms for these problems?

Only a single algorithm: For sparse graphs with $\tilde{O}(n^{2-\frac{1}{k+2}}m^{\frac{1}{k+2}})$ runtime

Nothing for dense graphs ☺

We present: $+2\sum_{i=1}^{k+1}W_i$ -APASP algorithm for dense graphs with $\tilde{O}(n^{2+\frac{1}{3k+2}})$ runtime

Question 3: What are the strongly commensurate versions of an (α, β) -APASP algorithm for some α, β ?

Additional answer to Q3:
$$+2\sum_{i=1}^{k+1}W_i$$
-APASP and $+2\cdot(k+1)$ -APASP

DHZ96: Dor, Halperin and Zwick (1996)

CZ97: Cohen and Zwick (1997) RS25: Roditty and Sapir (2025)

Additive: Unweighted vs Weighted

Unweighted	Runtime	Ref	Weighted	Runtime	Ref
+2	$n^{\frac{3}{2}}m^{\frac{1}{2}}$	DHZ96	$+2W_{1}$	$n^{\frac{3}{2}}m^{\frac{1}{2}}$	CZ97
+2	$n^{\frac{7}{3}}$	DHZ96	$+2W_{1}$	$n^{\frac{7}{3}}$	CZ97
$+2 \cdot (k + 1)$	$n^{2-\frac{1}{k+2}}m^{\frac{1}{k+2}}$	DHZ96	$+2\sum_{i=1}^{k+1}W_i$	$n^{2-\frac{1}{k+2}}m^{\frac{1}{k+2}}$	CZ97
$+2 \cdot (k + 1)$	$n^{2+\frac{1}{3k+2}}$	DHZ96	$+2\sum_{i=1}^{k+1}W_i$	$n^{2+\frac{1}{3k+2}}$	RS25

Plan of Talk

- APSP and APASP
- Additive APASP: Weighted and Unweighted
- Hitting Sets
- \circ Additive $+2W_1$ -APASP

$$k+1$$

- o Additive $+2\sum_{i=1}^{N} W_i$ -APASP
- Additional Results
- Further Directions

Hitting Sets

A universe of elements $\mathcal{U} = \{u_1, \dots, u_n\}$

A collection of subsets: T_1, T_2, \dots, T_ℓ

$$T_i \subseteq \mathcal{U}$$

A hitting set is a set $S \subseteq \mathcal{U}$ s.t. $S \cap T_i \neq \emptyset$ for all $1 \leq i \leq \ell$

For example: $\mathcal{U} = \{a, b, c, d\}$

$$T_1 = \{a, b, c\}, T_2 = \{b, c, d\}$$

 $S = \{b, c\}$ is a hitting set

$$S = \{c\}$$
 is a hitting set

Hitting Sets

How fast can we compute a hitting set?

Finding the smallest hitting set is NP-Hard!

Our usage: $|T_i| \ge r$, $\ell = n$

Aingworth, Chekuri, Indyk and Motwani (1996):

Lemma 1: A hitting set S of size $|S| \in \tilde{O}\left(\frac{n}{r}\right)$ can be computed in $\tilde{O}(nr)$ runtime.

Hitting Sets for Graphs?

How do hitting sets relate to a graph G = (V, E)?

Let
$$\mathcal{U} = V$$

$$T_v = \Gamma(v) = \text{neighbours of } v$$

Focus on high-degree vertices

$$\deg v \ge n^{\alpha}$$
 for some $\alpha \in (0,1)$

$$|S| \in \tilde{O}\left(\frac{n}{n^{\alpha}}\right) = \tilde{O}(n^{1-\alpha})$$

Pivots

For each $v \in V$: $\Gamma(v) \cap S \neq \emptyset$

There exists a vertex in $\Gamma(v) \cap S$

Let $p_S(u)$ be the nearest to u (by distance)

 $p_S(u)$ is the *pivot* of u, relatively to S

$$H = \{(u, p_S(u)) \mid u \in V\}$$

$$|H| \in O(n)$$

Hitting Sets for APASP?

How do hitting sets relate to APASP?

One way to compute APSP: Invoke SSSP from all $u \in V$

Yields precise distances (=APSP)

What is the issue?

|V| iterations of SSSP $\Rightarrow \tilde{O}(nm)$ runtime

What if invoke SSSP only from a subset $S \subseteq V$ of vertices?

The runtime: $\tilde{O}(|S| \cdot m)$

Hitting Sets for APASP?

On a high scale, the approach for APASP: Each vertex considers its neighbours $\Gamma(u)$

Invoke SSSP from a hitting set $S \subseteq V$

For $u, v \in V$: Estimate the distance through pivots

Plan of Talk

- APSP and APASP
- Additive APASP: Weighted and Unweighted
- Hitting Sets
- \circ Additive $+2W_1$ -APASP

$$k+1$$

- o Additive $+2\sum_{i=1}^{N} W_i$ -APASP
- Additional Results
- Further Directions

Base for Our Approach

Cohen and Zwick (1997): $+2W_1$ -APASP

Two algorithms: For dense graphs with $\tilde{O}(n^{\frac{7}{3}})$ runtime

For sparse graphs with $\tilde{O}(n^{\frac{3}{2}}m^{\frac{1}{2}})$ runtime

Cohen and Zwick (1997):
$$+2\sum_{i=1}^{k+1}W_{i}$$
-APASP

Only one: For sparse graphs with $\tilde{O}(n^{2-\frac{1}{k+2}}m^{\frac{1}{k+2}})$ runtime

Base for Our Approach

Our goal: Extend the $+2W_1$ -APASP algorithm with $\tilde{O}(n^{\frac{7}{3}})$ runtime

$$+2\sum_{i=1}^{k+1}W_{i}$$
-APASP algorithm with $\tilde{O}(n^{2+\frac{1}{3k+2}})$ runtime

Present a simplified version: $+2W_1$ -APASP algorithm of Cohen and Zwick

Toolkit: hitting-sets, pivots, SSSP invocations over smaller sets of edges

Warmup: $+2W_1$ -APASP

An undirected weighted graph G = (V, E, w)

 $\Gamma(u, n^{\beta}) = n^{\beta}$ nearest neighbours of $u, \beta \in (0,1)$

Each vertex $u \in V$ considers $T_u = \Gamma(u, n^{\beta})$

Find a hitting set S_1 for $\{\Gamma(u, n^{\beta}) \mid u \in V\}$

Lemma 1: A hitting set S of size $|S| \in \tilde{O}\left(\frac{n}{r}\right)$ can be computed in $\tilde{O}(nr)$ runtime.

In our case: $r = n^{\beta}$

$$|S_1| \in \tilde{O}(n^{1-\beta})$$

Warmup: $+2W_1$ -APASP

Warmup: $+2W_1$ -APASP

Each vertex considers edges to nearest neighbours

$$E_{1}(u) = \{(u, v) \mid v \in \Gamma(u, n^{\beta})\}$$

$$E_{1} = \bigcup_{u \in V} E_{1}(u)$$

$$u \in V$$

$$E_{2}(u) = \{(u, v) \mid v \in \Gamma(u, n^{\beta+\gamma})\}$$

$$E_{2} = \bigcup_{u \in V} E_{2}(u)$$

$$u \in V$$

$$|E_{1}| = n^{1+\beta}$$

$$|E_{2}| = n^{1+\beta+\gamma}$$

$+2W_1$ -APASP Algorithm Overview

1. Find $p_1(u)$ (resp. $p_2(u)$) for every $u \in V$

 $\tilde{O}(m)$

2. Set
$$d[u, p_1(u)] = \delta(u, p_1(u))$$
 (resp. $d[u, p_2(u)] = \delta(u, p_2(u))$)

- 3. For $S \in S_2$: Invoke SSSP over E and update d $\tilde{O}(|S_2| \cdot |E|) = \tilde{O}(mn^{1-\beta-\gamma})$
- 4. For $S \in S_1$: Invoke SSSP over E_2 and update $d^{\tilde{O}(|S_1| \cdot |E_2|)} = \tilde{O}(n^{1-\beta} \cdot n^{1+\beta+\gamma}) = \tilde{O}(n^{2+\gamma})$

$$\tilde{O}\big(|V|\cdot(|E_1|+|V|\cdot|S_2|)\big)=\tilde{O}\left(n\cdot\left(n^{1+\beta}+n\cdot n^{1-\beta-\gamma}\right)\right)=\tilde{O}\big(n^{2+\beta}+n^{3-\beta-\gamma}\big)$$
 5. For $u\in V$: Invoke SSSP over $E_1\cup\{(u,v)|v\in V\}\cup(S_2\times V)\cup H$ and update d

Total:
$$\tilde{O}(n^{2+\beta} + n^{2+\gamma} + n^{3-\beta-\gamma}) \Rightarrow \beta = \gamma = \frac{1}{3} \Rightarrow \tilde{O}(n^{\frac{7}{3}})$$

$+2W_1$ -APASP Algorithm Correctness

Let $u, v \in V$

Our aim: $d[u, v] \in [\delta(u, v), \delta(u, v) + 2W_1]$

Distinguish between three possible cases:

- 1. $u \sim v \subseteq E_1$
- 2. $u \sim v \subseteq E_2$ yet $u \sim v \not\subseteq E_1$
- 3. $u \sim v \nsubseteq E_2$

Case 1

$$u \sim v \subseteq E_1$$

$+2W_1$ -APASP Algorithm Overview

- 1. Find $p_1(u)$ (resp. $p_2(u)$) for every $u \in V$
- 2. Set $d[u, p_1(u)] = \delta(u, p_1(u))$ (resp. $d[u, p_2(u)] = \delta(u, p_2(u))$)
- 3. For $s \in S_2$: Invoke SSSP over E and update d
- 4. For $s \in S_1$: Invoke SSSP over E_2 and update d
- 5. For $u \in V$: Invoke SSSP over $E_1 \cup \{(u, v) | v \in V\} \cup (S_2 \times V) \cup H$ and update d

Case 1

$$u \sim v \subseteq E_1$$

$$d[u,v] = \delta(u,v)$$

$+2W_1$ -APASP Algorithm Correctness

Let $u, v \in V$

Our aim: $d[u, v] \in [\delta(u, v), \delta(u, v) + 2W_1]$

Distinguish between three possible cases:

- $1. \quad u \sim v \subseteq E_1$
 - 2. $u \sim v \subseteq E_2 \text{ yet } u \sim v \not\subseteq E_1$
 - 3. $u \sim v \nsubseteq E_2$

Case 2

Let y be such $(x, y) \notin E_1$, assume y is nearest to v

$+2W_1$ -APASP Algorithm Overview

- 1. Find $p_1(u)$ (resp. $p_2(u)$) for every $u \in V$
- 2. Set $d[u, p_1(u)] = \delta(u, p_1(u))$ (resp. $d[u, p_2(u)] = \delta(u, p_2(u))$)
- 3. For $s \in S_2$: Invoke SSSP over E and update d
- 4. For $s \in S_1$: Invoke SSSP over E_2 and update d
- 5. For $u \in V$: Invoke SSSP over $E_1 \cup \{(u, v) | v \in V\} \cup (S_2 \times V) \cup H$ and update d

Case 2

$u \sim v \subseteq E_2 \text{ yet } u \sim v \not\subseteq E_1$

Let y be such $(x, y) \notin E_1$, assume y is nearest to v

$$d[p_1(y), u] = \delta(p_1(y), u) \le \delta(u, y) + \delta(y, p_1(y))$$

$+2W_1$ -APASP Algorithm Overview

- 1. Find $p_1(u)$ (resp. $p_2(u)$) for every $u \in V$
- 2. Set $d[u, p_1(u)] = \delta(u, p_1(u))$ (resp. $d[u, p_2(u)] = \delta(u, p_2(u))$)
- 3. For $s \in S_2$: Invoke SSSP over E and update d
- 4. For $s \in S_1$: Invoke SSSP over E_2 and update d
- 5. For $u \in V$: Invoke SSSP over $E_1 \cup \{(u, v) | v \in V\} \cup (S_2 \times V) \cup H$ and update d

Case 2

 $u \sim v \subseteq E_2 \text{ yet } u \sim v \not\subseteq E_1$

Let y be such $(x, y) \notin E_1$, assume y is nearest to v

$$d[p_1(y), u] = \delta(p_1(y), u) \le \delta(u, y) + \delta(y, p_1(y))$$

$$d[u,v] \le d[u,p_1(y)] + d[p_1(y),y] + \delta(y,v) \le \delta(u,y) + 2\delta(y,p_1(y)) + \delta(y,v)$$

 $\le \delta(u,v) + 2w(x,y) \le \delta(u,v) + 2W_1(u,v)$

$+2W_1$ -APASP Algorithm Correctness

Let $u, v \in V$

Our aim: $d[u, v] \in [\delta(u, v), \delta(u, v) + 2W_1]$

Distinguish between three possible cases:

- $1. \quad u \sim v \subseteq E_1$
- - 3. $u \sim v \nsubseteq E_2$

Case 3

An arbitrary edge $(x, y) \notin E_2$

$+2W_1$ -APASP Algorithm Overview

- 1. Find $p_1(u)$ (resp. $p_2(u)$) for every $u \in V$
- 2. Set $d[u, p_1(u)] = \delta(u, p_1(u))$ (resp. $d[u, p_2(u)] = \delta(u, p_2(u))$)
- 3. For $s \in S_2$: Invoke SSSP over E and update d
- 4. For $s \in S_1$: Invoke SSSP over E_2 and update d
- 5. For $u \in V$: Invoke SSSP over $E_1 \cup \{(u, v) | v \in V\} \cup (S_2 \times V) \cup H$ and update d

Case 3

An arbitrary edge $(x, y) \notin E_2$

$$d[p_2(y), u] = \delta(p_2(y), u)$$
 and $d[p_2(y), v] = \delta(p_2(y), v)$

$+2W_1$ -APASP Algorithm Overview

- 1. Find $p_1(u)$ (resp. $p_2(u)$) for every $u \in V$
- 2. Set $d[u, p_1(u)] = \delta(u, p_1(u))$ (resp. $d[u, p_2(u)] = \delta(u, p_2(u))$)
- 3. For $s \in S_2$: Invoke SSSP over E and update d
- 4. For $s \in S_1$: Invoke SSSP over E_2 and update d
- 5. For $u \in V$: Invoke SSSP over $E_1 \cup \{(u, v) | v \in V\} \cup (S_2 \times V) \cup H$ and update d

Case 3

An arbitrary edge $(x, y) \notin E_2$

$$d[p_2(y), u] = \delta(p_2(y), u)$$
 and $d[p_2(y), v] = \delta(p_2(y), v)$

$$d[u,v] \le d[u,p_2(y)] + d[p_2(y),v] = \delta(u,p_2(y)) + \delta(v,p_2(y)) \le \delta(u,y) + 2\delta(y,p_2(y)) + \delta(y,v) \le \delta(u,v) + 2w(x,y) \le \delta(u,v) + 2W_1(u,v)$$

$+2W_1$ -APASP Algorithm Correctness

Let $u, v \in V$

Our aim: $d[u, v] \in [\delta(u, v), \delta(u, v) + 2W_1]$

Distinguish between three possible cases:

- \searrow 3. $u \sim v \not\subseteq E_2$

<u>Conclusion</u>: This algorithm computes a $+2W_1$ -APASP and requires $\tilde{O}(n^{\frac{2}{3}})$ runtime.

Plan of Talk

- APSP and APASP
- Additive APASP: Weighted and Unweighted
- Hitting Sets
- \circ Additive $+2W_1$ -APASP

$$k+1$$

- o Additive $+2\sum_{i=1}^{N} W_i$ -APASP
- Additional Results
- Further Directions

Only Two Levels?

Cohen and Zwick's $+2W_1$ -APASP algorithm: $\beta, \gamma \in (0,1)$

They considered: $\Gamma(u, n^{\beta})$ and $\Gamma(u, n^{\beta+\gamma})$

Hitting sets: S_1 and S_2

$$|S_1| \in \tilde{O}(n^{1-\beta}), |S_2| \in \tilde{O}(n^{1-\beta-\gamma})$$

Edges to nearest neighbours: E_1 and E_2

$$|E_1| \in O(n^{1+\beta}), |E_2| \in O(n^{1+\beta+\gamma})$$

What if we add more levels?

Adding More Levels

Simply $k \in \mathbb{N}$ levels?

We skipped a single level (k = 1)?

For k = 1 we still get a $+2W_1$ -APASP

The runtime will be $\tilde{O}(n^{2+\beta} + n^{3-\beta})$

Select
$$\beta = \frac{1}{2}$$

The runtime becomes $\tilde{O}(n^{\frac{5}{2}})$

Worse than $\tilde{O}(n^{\frac{7}{3}})$

Adding More Levels

What about k = 3?

The runtime will be $\tilde{O}(n^{2+\beta} + n^{2+\gamma} + n^{2+\delta} + n^{3-\beta-\gamma-\delta})$

Select
$$\beta = \frac{1}{4}$$

The runtime becomes $\tilde{O}(n^{\frac{9}{4}})$

But we compute a $+2W_1 + 2W_2$ -APASP

Weaker guarantee than $+2W_1$ -APASP

Adding More Levels

For
$$k=4$$
: $+2W_1+2W_2$ -APASP in $\tilde{O}(n^{\frac{11}{5}})$ runtime

Better than k=3: $+2W_1+2W_2$ -APASP in $\tilde{O}(n^{\frac{9}{4}})$ runtime

Not every $k \in \mathbb{N}$ is "useful"

3k + 2 levels

Parameters: $\beta_1, \beta_2, \dots, \beta_{3k+2} \in (0,1)$

3k + 2 Levels

$$\alpha_j = \sum_{i=1}^j \beta_i$$

Consider $\Gamma(u, n^{\alpha_j})$ for $1 \le j \le 3k + 2$

Hitting sets: S_j , $|S_j| \in \tilde{O}(n^{1-\alpha_j})$

Edges to nearest neighbours: E_j , $|E_j| \in O(n^{1+\alpha_j})$

Similar SSSP invocations

SSSP Invocations

Which edges should we consider in each SSSP invocation?

u will "see" E_{i+1}

We need to have $d[p_{i+1}(y), u]$

SSSP Invocations

Let $\Delta(u \sim v)$ be an upper bound for $d[u, v] - \delta(u, v)$

Here: $\Delta(u \sim v) = \Delta(u \sim x - y \sim p_{i+1}(y)) + 2w(x, y)$

Recursively: $p_{i+1}(y) \in S_{i+1}...$

Recursive Upper Bound for the Estimation

Recursive Upper Bound for the Estimation

Trivia: Does this guarantee an upper-bound that depends on $W_1, W_2, ..., W_{k+1}$?

Answer: Almost...

How can we guarantee that the same W_i is not used more than once? $\overset{\bullet}{\mathbf{w}}$

Instead of $p_{i+2}(\hat{y})$ we need to consider $p_{i*}(\hat{y})$

Where $i^* \ge i + 2$ is the largest index s.t. $\delta(\hat{y}, p_{i^*}(\hat{y})) \leq w(\hat{x}, \hat{y})$

A Word About Runtime

To compute the runtime:

- 1. List exactly the edges being used
- 2. Enumerate the number of recursive calls

Total runtime: $\tilde{O}(n^{2+\frac{1}{3k+2}})$

Additive $+2\sum_{i=1}^{k+1} W_i$ -APASP

Cohen and Zwick's $+2W_1$ -APASP algorithm

Runtime:
$$\tilde{O}(n^{\frac{7}{3}})$$

Our result:
$$+2\sum_{i=1}^{k+1}W_i$$
-APASP algorithm

Runtime:
$$\tilde{O}(n^{2+\frac{1}{3k+2}})$$

(Only the runtime for the base case differs...)

Plan of Talk

- APSP and APASP
- Additive APASP: Weighted and Unweighted
- Hitting Sets
- \circ Additive $+2W_1$ -APASP

o Additive
$$+2\sum_{i=1}^{k+1} W_{i}$$
-APASP

- Additional Results
- Further Directions

Nearly Additive APASP

Purely additive (α, β) -APASP $\Rightarrow \alpha = 1$

Nearly additive: $\alpha = 1 + \varepsilon$, for some small $\varepsilon > 0$

Cohen and Zwick's algorithm actually computed a $+2 \min\{2W_1, 4W_2\}$ -APASP

Saha and Ye (2024) computed a $(1 + \varepsilon, 2W_1)$ -APASP

Their runtime:
$$\tilde{O}\left(\left(\frac{1}{\varepsilon}\right)^{O(1)} \cdot n^{2.15135313} \cdot \log W\right)$$

In the same runtime, we compute a $(1 + \varepsilon, 2 \min\{2W_1, 4W_2\})$ -APASP

Multiplicative APASP

Cohen and Zwick (1997), Baswana and Kavitha (2010), Kavitha (2012):

2-APASP,
$$\frac{7}{3}$$
-APASP, $\frac{5}{2}$ -APASP, 3-APASP

Roditty and Akav (2021) extended these specific approximations:

$$\frac{3\ell+4}{\ell+2}$$
-APASP

We consider a similar family:

$$\left(\frac{3\ell+4}{\ell+2}+\varepsilon\right)$$
-APASP

Tradeoffs

In general:

 (α_1,β_1) -APASP algorithm \mathcal{A}_1 and an (α_2,β_2) -APASP algorithm \mathcal{A}_2

Running both (assuming they have the same runtime...):

$$\begin{cases} d[u,v] \leq \alpha_1 \cdot \delta(u,v) + \beta_1 \\ d[u,v] \leq \alpha_2 \cdot \delta(u,v) + \beta_2 \end{cases}$$

$$\downarrow \downarrow$$

$$d[u,v] \leq \frac{\alpha_1 + \alpha_2}{2} \cdot \delta(u,v) + \frac{\beta_1 + \beta_2}{2}$$

Tradeoffs

Running both yields a $\left(\frac{\alpha_1 + \alpha_2}{2}, \frac{\beta_1 + \beta_2}{2}\right)$ -APASP algorithm \mathcal{A}_3

Same runtime as \mathcal{A}_1 , \mathcal{A}_2

Any type of weighted average:

$$d[u,v] \le \frac{\alpha_1 \cdot \gamma + \alpha_2 \cdot \tau}{\gamma + \tau} \cdot \delta(u,v) + \frac{\beta_1 \cdot \gamma + \beta_2 \cdot \tau}{\gamma + \tau}$$

$$A\left(\frac{\alpha_1\cdot\gamma+\alpha_2\cdot\tau}{\gamma+\tau},\frac{\beta_1\cdot\gamma+\beta_2\cdot\tau}{\gamma+\tau}\right)-APASP algorithm$$

Tradeoffs: Concrete Examples

Our algorithm: $+2\sum_{i=1}^{k+1}W_i$ -APASP algorithm with $\tilde{O}(n^{2+\frac{1}{3k+2}})$ runtime

Akav and Roditty (2021): $\frac{3\ell+4}{\ell+2}$ -APASP algorithm with $\tilde{O}(n^{2-\frac{3}{\ell+2}}m^{\frac{2}{\ell+2}}+n^2)$ runtime

For $m=n^2$ and $\ell=3k$ it is a $\frac{9k+4}{3k+2}$ -APASP algorithm with $\tilde{O}(n^{2+\frac{1}{3k+2}})$ runtime

Running both:
$$\left(\frac{(9k+4)\cdot\gamma+(3k+2)\cdot\tau}{\gamma+\tau}, \frac{2\tau}{\gamma+\tau} \cdot \sum_{i=1}^{k+1} W_i\right)$$
-APASP

For example:
$$\left(\frac{6k+3}{3k+2}, \sum_{i=1}^{k+1} W_i\right)$$
 -APASP with $\tilde{O}(n^{2+\frac{1}{3k+2}})$ runtime

Plan of Talk

- APSP and APASP
- Additive APASP: Weighted and Unweighted
- Hitting Sets
- \circ Additive $+2W_1$ -APASP

- o Additive $+2\sum_{i=1}^{N} W_i$ -APASP
- Additional Results
- Further Directions

Further Directions

Runtime gap between the runtimes: base case (k = 0) and general case

$$\tilde{O}(n^{\frac{7}{3}})$$
 and $\tilde{O}(n^{2+\frac{1}{3k+2}})$

The above holds as well for the unweighted setting

Strongly Commensurate: Other approaches except W_i ?

Additive to Multiplicative? $+2W_2$ -APASP \Rightarrow 2-APASP

Plan of Talk

- APSP and APASP
- Additive APASP: Weighted and Unweighted
- Hitting Sets
- \circ Additive $+2W_1$ -APASP

$$k+1$$

- o Additive $+2\sum_{i=1}^{N} W_{i}$ -APASP
- Additional Results
- Further Directions

The End (for today)

To Be Continued