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A simplicial complex ∆ is flag if its faces are exactly the cliques of
its 1-skeleton. If additionally, ∆ has no induced cycles of length
3 < l < k then ∆ is k-large; where 5-large is also called
flag-no-square, or fns for short.

The flag-no-square condition was introduced and studied in the
context of cubical structures on 3-manifolds by L. Siebenmann. Its
importance for the geometry of cubical complexes comes from the
following observation by Gromov:

A right-angled Coxeter group is word-hyperbolic iff its nerve is a
flag-no-square simplicial complex.



It is known that for every simplicial complex of dimension d ≤ 3
there exists a fns complex homeomorphic to it,
Dranishnikov [Dra99] for d ≤ 2, and Przytycki and Swiatkowski [PS09] for d = 3.

while the 4-sphere and any 4-dimensional homology sphere has no
fns triangulation,
Januskiewicz and Swiatkowski [JS03].

Note that every vertex link in a homology manifold (compact,
without boundary) is a homology sphere. thus, a d-dimensional
(homology) manifold has a fns triangulation if d < 4 and has no
fns triangulation if d > 4.

The following question is open:

Question

Which triangulable 4-manifolds admit a flag-no-square
triangulation?



Some lower bounds on the Euler characteristic χ(M) of
4-manifolds M admitting a fns triangulation are known:

χ(M) ≥ f0(M)

if M is a fns triangulation of a 4-manifold.
Kopczýnski, Pak and Przytycki [KPP09].

Hence, e.g. χ(M) ≥ 18 by passing to links, as one can show that
the icosahedron, which has 12 vertices, minimizes the number of
vertices among fns triangulations of the 2-sphere (plus little extra
work to reach the 18 bound), and likely χ(M) ≥ 123, which would
follow if the boundary of the 600-cell minimizes the number of
vertices among fns triangulations of the 3-sphere.



On the other hand, very limited constructions of fns 4-manifolds
are known, described in [PS09, 4.4(2)]: they are all quotients of
the regular simplicial tesselation of the hyperbolic 4-space with all
vertex links isomorphic to the boundary complex of the 600–cell,
by an appropriate subgroup of its (Coxeter) automorphism group;
in particular, the resulting fns manifolds are aspherical.



The star connected sum

Suppose N and M are two disjoint simplicial complexes, and
suppose there is a combinatorial isomorphism between the vertex
links lkv (N) and lku(M) with the isomorphism being induced by
some bijection on their vertices ϕ : V (lkv (N)) → V (lku(M)). We
will use the same notation for the combinatorial isomorphism
between the vertex links and write it as ϕ : lkv (N) → lku(M). Also
recall that for a vertex v ∈ M, the antistar astv (M) is the
subcomplex consisting of all faces of M not containing v .

Definition

The star connected sum N#ϕM is the simplicial complex
obtained by gluing the antistars astv (N) and astu(M) according to
ϕ, namely we take the union of the antistars and identify w with
ϕ(w) for all w ∈ V (lkv (N)).



Lemma 1

Assume N and M are disjoint fns orientable connected
4-manifolds, v ∈ V (N), u ∈ V (M) and ϕ : lkv (N) → lku(M) a
combinatorial isomorphism that reverses orientation. Then

(i) N#ϕM is an orientable fns 4-manifold, homeomorphic to the
connected sum N#M, and

(ii) χ(N#ϕM) = χ(N) + χ(M)− 2.

Lemma 1 implies the following corollary.

Corollary 2

There exist non-aspherical 4-manifolds admitting a fns
triangulation.

This settles in the negative Question 5.8(1) in [PS09].



The star handle

Next we use a handle-type construction, similar to the star
connected sum: given a connected simplicial manifold N admitting
two vertices v and u of graph distance at least 5 with isomorphic
vertex links lkv (N) and lku(N), denote by
ϕ : V (lkv (N)) → V (lku(N)) a bijection that induces an
isomorphism of the links. Under these conditions:

Definition

The star handled N, denoted by hϕ(N), is the simplicial complexa

obtained from the subcomplex (N − v)− u of N by identifying the
links lkv (N) and lku(N) according to ϕ, namely we take the
quotient of (N − v)− u by identifying w with ϕ(w) for all
w ∈ V (lkv (N)).

aThe condition on the graph distance d(u, v) ≥ 5 guarantees that hϕ(N) is
indeed a simplicial complex.



Note that topologically hϕ(N) is homeomorphic to N with a
(hollow) 1-handle attached. The following Lemma follows.

Lemma 3

Let N be a fns orientable connected 4-manifold and v , u ∈ V (N)
of distance at least seven in the graph metric of the 1-skeleton of
N, and ϕ : lkv (N) → lku(N) a combinatorial isomorphism that
reverses orientation. Then

(i) hϕ(N) is a fns 4-manifold, homeomorphic to N with a hollow
1-handle attached, and

(ii) χ(hϕ(N)) = χ(N)− 2.



All of the fns manifolds constructed in [PS09, 4.4(2)] have even
Euler characteristic. The question arises:

Question

Which positive integers can be realized as the Euler characteristic
of some fns 4-manifold?

By iterative use of Lemmas 1 and 3, starting with manifolds as
above obtained from subgroups with minimal displacement at least
16, we obtain

Proposition 4

For all even s large enough there exists a 4-manifold Gs , admitting
a fns triangulation, with χ(Gs) = s.



Given Proposition 4, it is natural to ask

Question

How many combinatorially distinct fns triangulations can a
connected 4-manifold admit?

By the result of [KPP09] mentioned above, that χ(∆) ≥ f0(∆),
indeed there are only finitely many such triangulations.



We give a better estimate: let t(M) be the number of
combinatorial types of fns triangulations of a given connected
4-manifold M, and let

t(k) =
∑

χ(M)=k

t(M)

where the summation runs over all connected 4-manifolds of Euler
characteristic k.

Theorem 5

(i) For all even k large enough there exists a 4-manifold Mk with
χ(Mk) = Θ(k) that has at least k! combinatorially distinct
fns triangulations. Thus:

t(Mk) ≥ 2k log k .

(ii) There exists a constant b > 0 such that for all k large enough:

t(k) ≤ bk
3/2 log k .



Proof of Lemma 1 I

The star connected sum N#ϕM is homeomorphic to the usual
connected sum N#M. Note that astv (N), astu(M), lkv (N), and
lku(M) are flag-no-square since they are induced subcomplexes of
the fns simplicial complexes N and M respectively. Note that the
union A ∪ B of two flag complexes A and B, whose intersection
A ∩ B is an induced subcomplex in both, must be flag as well; thus
N#ϕM is flag.
Now, assume by contradiction that there is an induced square,
namely 4-cycle, abcd in N#ϕM. As abcd ̸⊆ astu(M) and
abcd ̸⊆ astv (N), this induced square has to have exactly one
vertex in astu(M) \ astv (N) and exactly one vertex in
astv (N) \ astu(M); as shown in the following figure.



Proof of Lemma 1 II

So if the square has vertices a, b, c , and d , then without loss of
generality, we can assume that a ∈ astv (N) \ lkv (N),
c ∈ astu(M) \ lku(M) and b, d ∈ lku(M) = lkv (N) (under their
identification). But then ubcd would be an induced square in M, a
contradiction. This proves item (i).
Item (ii) follows directly from (i), by applying the Mayer–Vietoris
sequence to our connected sum. Indeed, the Betti numbers satisfy

βi (N#M) = βi (N) + βi (M)

for i = 1, 2, 3, and β0(N#M) = 1 = β4(N#M).



Proof of lemma 3

We know that hϕ(N) is homeomorphic to N with a hollow
1-handle attached. To see that hϕ(N) is fns, note that all induced
cycles in hϕ(N) formed by identifying the ends w and ϕ(w) in an
induced path w . . . ϕ(w) in N have length at least 5, as the
corresponding induced path vw . . . ϕ(w)u in N has length at least
7 by assumption. This proves item (i). The Euler characteristic
formula χ(hϕ(N)) = χ(N)− 2 follows from straightforward
computations using the Mayer–Vietoris sequence, proving item (ii).



Proof of Proposition 4

Let M be a connected fns 4-manifold of the construction scheme
in [PS09]. All vertex links of M are isomorphic to the boundary
complex of the 600–cell, and the diameter of the graph of M is at
least 8.
Take two vertices u, v which are diametrically apart, and let
P = uabu′c . . . dv ′ev be an induced path realizing the diameter of
G .
Let h(M) be the star handled M (denote χ(M) = m).
Take a “row” of k copies of h(M) with

k(m − 4) + 2 ≤ s < (k + 1)(m − 4) + 2,

If the equality k(m − 4) + 2 = s above holds then χ(M ′) = s, and

we are done. Otherwise, replace (the last) s−k(m−4)−2
2 copies of

h(M) in the row with copies of M.
To summarize, we constructed connected fns 4-manifolds Gs with
χ(Gs) = s for all even s ≥ (m−6)(m−4)

2 + 2.



Proof of Theorem 5(ii)

Recall that a fns 4-manifolds with Euler characteristic k has at
most k vertices by [KPP09], and notice that a fns 4-manifold is
determined by its 1-skeleton G (by flagness), and (i) G has no
induced C4 and (ii) G has largest clique size 5. From [GHS02,
Theorem 1] it follows that a graph with n vertices satisfying (i)
and (ii) has at most 5√

2
n1.5 edges.

Let

F =

{
G

∣∣∣∣ |V (G )| ≤ k, |E (G )| ≤ 5√
2
|V (G )|1.5

}
.

Then

t(k) ≤ |F | =
∑
y≤k

∑
i≤ 5√

2
y1.5

((y
2

)
i

)
< k

∑
i≤ 5√

2
k1.5

((k
2

)
i

)
· · · < e9k

1.5·ln k

and hence we obtain the claimed bound with constant b = e9.



Proof of Theorem 5(i): 4-manifolds with factorially many
different fns triangulations

The idea behind our construction is to realize geometrically the
cycle structure of a permutation.

We construct certain decorated building blocks to represent
1, . . . , k , glue them in a row via the star connected sum operation,
and then we further glue a decoration of the block corresponding
to i to a decoration of the block corresponding to j whenever
σ(i) = j , for σ ∈ Sk .

We then show that the triangulations Tσ and Tπ thus obtained are
combinatorially distinct whenever σ ̸= π, for permutations
σ, π ∈ Sk .



Building blocks

Let M be our starting connected 4-manifold, denote χ(M) = n,
and let TM be its fns triangulation, and G := G (TM) the graph
(1-skeleton) of TM . Consider two vertices u, v ∈ V (G )
diametrically apart, and denote d(u, v) = diam(G ) =: d .

We can have d as large as we want, by letting M = H4/K for an
appropriate subgroup K as explained in the Introduction, and in
the resulted triangulation TM all vertex links are isomorphic to the
boundary of the 600-cell. How large we need d to be will be
determined along the proof.

Let w be a third vertex (approximately) half way between u and v .
Explicitly: take w on a path of length d from u to v so that
d(u,w) = ⌈d2 ⌉ and d(v ,w) = ⌊d2 ⌋.



Building blocks
The row Ra of length a is the fns 4-manifold

Ra := TM#TM# . . .#TM︸ ︷︷ ︸
a times

A crucial choice here is to perform each of the gluings with the
identity map induced on the link of the vertices where the gluing
occurs

Our crucial choice of gluing allows us to have a good estimate on
the diameter of a row Ra:

2(d−1)+(a−2)(d−2) = d(u, v) ≤ diam(Ra) ≤ 2(d+3)+(a−2)(d−2)

Thus, we know the diameter of Ra up to constant error, of 8.



Building blocks

A second building block employs the third distinguished vertex w :
The 4-manifold E is obtained by applying the star connected sum
construction to 17 copies of M (of TM to be precise) according to
the following scheme:

diam(E ) ≤ 2(d + 3) + 2(d + 1) + 9(d − 2) = 13d − 10



Building blocks

Let E1, . . . ,Ek be k copies of E , and denote the corresponding
four distinguished vertices of Ei by ui , vi , ti , bi . We define a “row”
of star connected sums:

Nk := R15k#E1# . . .#Ek#R14k ,

Figure: N4



Constructing Tσ

Given a permutation σ ∈ Sk , we attach k 1-handles to Nk and
obtain a manifold Mk with a fns triangulation Tσ. Explicitly, for
each 1 ≤ i ≤ k we glue a copy of H (as in the figure below) along
its u to ti of Nk , and along its v to bj of Nk , where σ(i) = j .

By Lemmas 1 and 3, all the fns complexes Tσ thus obtained, for
σ ∈ Sk , triangulate the same topological manifold, denoted by Mk .



Constructing Tσ

Figure: Tσ for σ = (2, 3, 4) ∈ S4



Reconstructing σ from Tσ

Let G = G (T ) be the graph of T .
1 Find two vertices s, e ∈ V (G ) diametrically apart in G .
2 Find a path from s to e through the “spine”.

3 Walk along the path with a “lens” to identify junctions.

4 Short distance between the junctions ui and vj means
σ(i) = j .



Reconstructing σ from Tσ: determination of junctions I

A key ingredient for the reconstruction is the determination of the
junctions. A copy of M is called a junction if it has been glued on
all of its three distinguished vertices u, v and w . A junction in a
copy of H is called a handle-junction. To identify the junctions of
T , consider for every vertex x ∈ V (G ) the sphere of radius

⌈
3
2d

⌉
centered at x :

Σx =

{
y ∈ V (G )

∣∣∣∣ d(y , x) = ⌈
3

2
d

⌉}
.

Let Bl(x) denote the set of vertices in G of graph distance at most
l from x . Note that Σx is the boundary of B⌈ 3

2
d⌉(x).



Reconstructing σ from Tσ: determination of junctions II

Lemma 6

Let d ≥ 77.

1 If x is in a junction then Σx is partitioned into three sets,
called clusters:

Σx = C1 ∪ C2 ∪ C3

where two vertices from the same cluster have distance at
most d + 18, and two vertices from different clusters have
distance at least 3

2d − 20 (which is larger then d + 18 by our
assumption on d).

2 Assume x is in a junction J. Then J is a handle-junction if
and only if G \ B⌈ 3

2
d⌉(x) is disconnected with one small

component (of at most 2|V (TM)| vertices), and a second
component containing all other vertices.



Reconstructing σ from Tσ: determination of junctions

proof: Let us consider the 2d − 4 neighborhood N of a junction J:

Since x ∈ J is at distance at most d + 9 from any vertex of
S1 ∪ S2 ∪ S3 (recall this distance estimate comes from the fact that
the diameter of the 600-cell graph is 5), each vertex in Σx must lie
outside J, at least 3

2d − (d + 9) = 1
2d − 9 away from J, for

d ≥ 19. On the other hand, any vertex of N not in J must belong
to D1 ∪ · · · ∪ D6.



Reconstructing σ from Tσ: determination of junctions I

Hence the sphere Σx consists of the three light blue arcs in the
figure below:

which satisfy the conditions in item (1) for clusters:

C1 = Σx ∩ (D1 ∪ D4)

C2 = Σx ∩ (D2 ∪ D5)

C3 = Σx ∩ (D3 ∪ D6)



Reconstructing σ from Tσ: determination of junctions II

Indeed, consider two vertices p, q in C1. If both belong to D1 or
both belong to D4, then they are at most d + 6 away from each
other.

Suppose p ∈ D1 and q ∈ D4. We have⌈
3
2d

⌉
= d(p, x) ≤ d(p, S1) + diam(S1) + d(S1, x)⌈

3
2d

⌉
= d(q, x) ≥ d(x ,S1) + d(S1, S4) + d(S4, q)

d(p, q) ≤ d(p, S4) + diam(S4) + d(S4, q)

Substituting the estimates that we have into the first inequality we
get

⌈
d
2

⌉
− 8 ≤ d(x , S1). Then plugging the obtained inequality

into the second inequality we get d(S4, q) ≤ 10, and finally, the
third inequality yields d(p, q) ≤ d + 18 as promised.

The same argument works for C2 and C3.



Reconstructing σ from Tσ: determination of junctions III

Next, consider two vertices from different clusters, say u1 ∈ C1 and
u2 ∈ C2. Since a shortest path from u1 to u2 must pass through S1
and S2 we have:

d(u1, u2) ≥ d(u1, S1) + d(S1, S2) + d(S2, u2)

≥
(
1

2
d − 9

)
+

(
1

2
d − 2

)
+

(
1

2
d − 9

)
=

3

2
d − 20.

Similarly, the same estimate holds for the other two choices of a
pair of clusters Ci . This completes the proof of (1).
To prove (2) notice that if x is in a handle-junction J then
G \ B⌈ 3

2
d⌉(x) is indeed composed of two connected components:

the top part of an H, and the rest of the graph G . While, if J is a
non-handle-junction then either G \ B⌈ 3

2
d⌉(x) is connected, or

G \ B⌈ 3
2
d⌉(x) has two “large” components: one contains the left

R15k , while the other contains the right R14k ; each has more than
2|V (TM)| vertices. □



Remark 7

The conclusion in item (1) of Lemma 6 could hold even for vertices
not in a junction but only close to a junction (for instance, vertices
in D1, close to S1). Call these junction vertices. We can still
identify a vertex that is actually in a junction by considering a
maximal sequence of consecutive junction vertices along an
induced path in G passing from left to right (i.e., through the
sequence of components D4,D1, J,D3,D6) and taking the middle
vertex in this sequence.

Note that for every path P from s to e that intersects each Ei only
in its row part, each vertex x ∈ P satisfies that G \ B⌈ 3

2
d⌉(x) is

either connected or has two large connected components, each of
size larger than 2|V (TM)|. Furthermore, every shortest path from
s to e among those not intersecting any copy of H is of the same
form as P above.



Reconstructing σ from Tσ: the spine and the junction
vertices

Thus, using Lemma 6, we may identify a shortest path π from s to
e among those that do not pass through handle-junctions:

π = (s = p1, p2, . . . , pr = e) .

Walking along π, and considering the sequences of spheres
(Σpi )

r
i=1 we will encounter a subsequence of consecutive junction

vertices (maximal w.r.t. inclusion) after about 15k(d − 2) steps.
Its middle vertex u1 is in a junction J1,1 of E1. Continuing the
sequence of spheres we will have a short junction-free subsequence,
followed by a second (maximal) subsequence of consecutive
junction vertices – its middle vertex v1 is in a junction J2,1 of E1.
Proceeding in this manner, we distinguish the vertices

u1, v1, u2, v2, . . . , uk , vk

where ui lies in junction J1,i of Ei , and vi lies in junction J2,i of Ei ,
for each 1 ≤ i ≤ k.



Reconstructing σ from Tσ: the end I

We can now recover σ:

Lemma 8

Let d ≥ 77. For each 1 ≤ i , j ≤ k we have:

1 If σ(i) = j , then d(ui , vj) ≤ 7d + 51.

2 If σ(i) ̸= j ̸= i , then d(ui , vj) > 8d − 16.

Thus, for all 1 ≤ i ≤ k, if there exists j ̸= i such that
d(ui , vj) ≤ 7d +51 then this j is unique and σ(i) = j , else σ(i) = i .

As discussed above, for d ≥ 77 the junction vertices ui ∈ J1,i and
vj ∈ J2,j are well defined for 1 ≤ i , j ≤ k. If σ(i) = j , then consider
a shortest path from ui to vj among those that pass through the
handle H connecting the copy of M containing ti to the copy of M
containing bj . Such a path starts with ui , crosses the junction J1,i
of Ei along at most d + 9 edges, then crosses the next two copies
of M reaching the handle H along at most 2(d + 6) edges, then
crosses H along at most d + 9 edges, then crosses the next two



Reconstructing σ from Tσ: the end II

copies of M reaching the junction J2,j of Ej along at most 2(d + 6)
edges, and continues in this J2,j to vj along at most d + 9 edges.
Altogether this path has length at most 7d + 51, proving item (1).
Next, assume σ(i) ̸= j ̸= i . Then, a shortest path from ui to vj
either crosses at least eight consecutive non-junction copies of M
in a row – passing from some Ek to Ek±1 – thus such path has
length at least 8(d − 2), or it passes through at least two handles,
yielding a path of length at least 13(d − 2). This proves item (2).
As d ≥ 77, then 8(d − 2) > 7d + 51, and the recovery of the
unique permutation σ for which T = Tσ is complete.



End of the proof

To finish the proof of Theorem 5(i) let us observe that the Euler
characteristic of Mk is indeed linear in k : denote n = χ(M). First,
notice that attaching a handle H contributes χ(H)− 4 = 3n− 8 to
χ, by Lemmas 1(ii) and 3(ii). Thus:

χ(Mk) = χ(Nk) + k(3n − 8)

Now, we compute χ(Nk) using Lemmas 1(ii) and 3(ii):

χ(Nk) = χ(R15k#E1# . . .#Ek#R14k)

= χ(R15k) + kχ(E ) + χ(R14k)− 2(k + 1)

= (46n − 92)k + 2

so we conclude

χ(Mk) = (46n− 92)k + 2+ k(3n− 8) = (49n− 100)k + 2 = Θ(k)

as claimed.



Concluding remarks I

In view of Corollary 4, we ask:

Problem

Is there a 4-manifold of odd Euler characteristic that admits a fns
triangulation?

If the answer is Yes, with a construction admitting a vertex whose
link is isomorphic to the boundary of the 600-cell, then gluing it to
the fns manifolds Gs of Corollary 4 via a star connected sum along
the link of such vertex, would yield connected fns 4-manifolds
realizing every large enough integer as their Euler characteristic.



Concluding remarks II

In view of Theorem 5, we ask:

Problem

Is the number of fns triangulations of a 4-manifold Mi

super-factorial in χ(Mi ) for a suitable sequence of manifolds (Mi )i?

Similarly, can the upper bound of Theorem 5 on t(Mi ) be
improved? Is t(x) of larger order of magnitute than any t(M)
where χ(M) = x and x tends to infinity?
Next, we consider the piecewise linear structure of our constructed
manifolds:

Problem

Are the different combinatorial triangulations Tσ of the 4-manifold
Mk we get in Theorem 5 PL-homeomorphic?
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