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Inverse Problem

Find x

Ax = y

Well-posedness (aka Hadamard’s conditions)

• The problem has a solution

• The solution is unique

• The solution’s behavior changes continuously with the initial conditions

Well-posed problem =⇒ use inverse x = A−1y
Ill-posed problem =⇒ use pseudo-inverse!
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Moore–Penrose inverse

Figure 1: Number of papers published, in whose titles, abstracts or keynotes occurs the phrase
“Moore–Penrose inverse” according to Elsevier Scopus (as of 17.09.2025)
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Definition12

Pseudo-inverse A† as generalized inverse (Moore–Penrose conditions)

• AA†A = A (AA† is an orthogonal projector onto column spaces)

• A†AA† = A† (weak inverse)

• (AA†)∗ = AA† (is Hermitian)

• (A†A)∗ = A†A (is Hermitian)

Every matrix A has its Moore–Penrose pseudo-inverse A†;
the pseudo-inverse is unique;
if A is square and non-singular, then A† = A−1.
(A†)† = A, (A∗)† = (A†)∗, (AT )† = (A†)T , A† = (A∗A)†A∗ = A∗(AA∗)†

1[Moore, 1920]
2[Penrose, 1955]
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Limit definition3

Limit definition

For any A ∈ Cm×n, as λ → 0 through any neighborhood of 0 in C, the following limits
exist and

A†
L = lim

λ→0
(A∗A+ λI )−1A∗ = A†

A†
R = lim

λ→0
A∗(AA∗ + λI )−1 = A†

A∗A and AA∗ are semi-positive definite and symmetric,
therefore A∗A+ λI and AA∗ + λI are invertible

• If A has linearly independent columns (A∗A is invertible), A† = (A∗A)−1A∗

• If A has linearly independent rows (AA∗ is invertible), A† = A∗(AA∗)−1

3[Ben-Israel and Greville, 2003]
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Explicit formula

Theorem (MacDuffee, 1959)

If A ∈ Cm,n
r , r > 0, has a full-rank factorization

A = FG ,

then
A† = G ∗(F ∗AG ∗)−1F ∗.

Moreover, A† = G †F †.
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SVD
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SVD
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Learning theory

For given dataset {(x , y)} find the best (?) function f , such that y = f (x)
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Machine learning

The Bayesian approach, or maximum a posteriori probability (MAP) estimate, finds an x
such that maximizes the conditional probability p(x |y). According to the Bayes rule

p(x |y) = p(x , y)

p(y)
=

p(y |x)p(x)∫
p(y |x)p(x)dx

∝ p(y |x)p(x),

therefore maximisation of p(x |y) corresponds to the following problem:

argmin
x
(− log p(y |x)− log p(x)).

Real probability distribution functions are unknown, therefore some heuristics are used

x̂ = argmin
x
{L(f , x , y) + αρ(x)},

where l(x , y) is a loss function and ρ(x) is a regularization term.

10 / 20



Hypothesis space

Let’s consider f from Hypothesis space H.
Expected risk for given loss-function L:

E(f ) =
∫
X×Y

L(f (x), y)dρ(x , y) → min

Empirical risk (Tikhonov-Phillips regularization):∑
(xi ,yi )

L(f (xi ), yi ) + λ∥f ∥2H

If we consider Hypothesis space reproducing kernel Hilbert space (RKHS) generated by a
kernel K : X × X → R, by the representer theorem for RKHS, the minimizer of empirical
risk is equal to

f λ{(xi ,yi )} =
∑
xi

ciK (·, xi ).
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Least squares method

Ax = y

L(x) = ∥Ax − y∥2 → min

∇L(x) = 2ATAx − 2AT y = 0

ATAx = AT y

x = A†y
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Linear least squares

Ax = y

L(x) = ∥Ax − y∥ → min

x = A†y + (I − A†A)v ,

for any vector v .
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Applications

• Sparse and Redundant Representations

• Artificial Neural Networks for Computer Vision, Natural Language Processing

• Physics research ([Baksalary and Trenkler, 2021])

and many more...

Sir Roger Penrose was awarded the Nobel Prize in Physics in 2020
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Resistance Distance

The Moore–Penrose inverse of Laplacian matrix of a graph can be applied to study the
resistance distance between vertices of the graph.
The resistance distance between two vertices of a simple, connected graph, G , is equal to
the resistance between two equivalent points on an electrical network, constructed so as
to correspond to G , with each edge being replaced by a resistance of one ohm. It is a
metric on graphs.
The resistance distance between two vertices u and v of G can be obtained via the
formula

r(u, v) = L†u,u + L†v ,v − 2L†u,v .
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Laplacian matrix

The Laplacian matrix L(G ) is an n × n matrix whose rows and columns are indexed by
vertices of G . The (i , j)-entry of L(G ) is equal to degG (vi ), the degree of the vertex vi , if
i = j , and it is −1 or 0 if the vertices vi and vj are adjacent or non-adjacent, respectively.
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Resistance distance: examples

Tetrahedral Graph K4

R(K4) =
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
For a complete graph Kn, the resistance distance between any two distinct vertices i and j
is given by the formula:

Rij(K4) =
2

n
· 1i ̸=j
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Resistance distance: examples

Cubical Graph Q3

R(Q3) =
1

12



0 5 5 7 5 7 7 8
5 0 7 5 7 5 8 7
5 7 0 5 7 8 5 7
7 5 5 0 8 7 7 5
5 7 7 8 0 5 5 7
7 5 8 7 5 0 7 5
7 8 5 7 5 7 0 5
8 7 7 5 7 5 5 0



L(Q3) =



3 −1−1 0 −1 0 0 0
−1 3 0 −1 0 −1 0 0
−1 0 3 −1 0 0 −1 0
0 −1−1 3 0 0 0 −1
−1 0 0 0 3 −1−1 0
0 −1 0 0 −1 3 0 −1
0 0 −1 0 −1 0 3 −1
0 0 0 −1 0 −1−1 3



L†(Q3) =
1

96



29 9 9 1 9 1 1 −3
9 29 1 9 1 9 −3 1
9 1 29 9 1 −3 9 1
1 9 9 29−3 1 1 9
9 1 1 −3 29 9 9 1
1 9 −3 1 9 29 1 9
1 −3 9 1 9 1 29 9
−3 1 1 9 1 9 9 29


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Thank you!
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