Multiple Perspectives on the Moore-Penrose

Pseudoinverse
Theory, Computation, and Application

Galyna Kriukova

Department of Mathematics
National University of Kyiv-Mohyla Academy

September 18, 2025

1/20



Inverse Problem

Ax=y

Well-posedness (aka Hadamard's conditions)

® The problem has a solution

® The solution is unique

® The solution’s behavior changes continuously with the initial conditions

Well-posed problem == use inverse x = A~y
[ll-posed problem = use pseudo-inverse!
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Moore—Penrose inverse
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Figure 1. Number of papers published, in whose titles, abstracts or keynotes occurs the phrase
“Moore—Penrose inverse” according to Elsevier Scopus (as of 17.09.2025)
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Pseudo-inverse AT as generalized inverse (Moore—Penrose conditions)

o AATA=A (AAT is an orthogonal projector onto column spaces)
o ATAAT = AT (weak inverse)

o (AAT)* = AAT (is Hermitian)

o (ATA)* = ATA (is Hermitian)

Every matrix A has its Moore—Penrose pseudo-inverse A

the pseudo-inverse is unique;

if Ais square and non-singular, then AT = A1,

(AN = A, (A")T = (A1), (AT)T = (AT)T, AT = (A*A)TA* = A*(AA")!

![Moore, 1920]

?[Penrose, 1955]
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Limit definition3

For any A € C™*" as A\ — 0 through any neighborhood of 0 in C, the following limits
exist and

Al = lim (A*A+ M) 7LA* = Af
A—0

. * * -1
Al = lim A%(AA" + A1) = At

A*A and AA* are semi-positive definite and symmetric,
therefore A*A + A\l and AA* 4+ Al are invertible

® If A has linearly independent columns (A*A is invertible), AT = (A*A)~1A*
e If A has linearly independent rows (AA* is invertible), AT = A*(AA*)~1

3[Ben-Israel and Greville, 2003]
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Explicit formula

Theorem (MacDuffee, 1959)
IfAe C™" r>0, has a full-rank factorization

A = FG,

then
Al = G*(F*AG*)"1F*.

Moreover, AT = GTFT,
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SvD

THEOREM 2 (The Singular Value Decomposition). Let O # A € CJ**™
and let

gL >ay > >0, >0 (0.32)

be the singular values of A.
Then there exist unitary matrices U € U™*™ and V € U™*™ such that
the matriz

a1

S = U AV = (1)

ar

is diagonal.
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COROLLARY 1 (Penrose [635]). Let A, &, U, and V' be as in Theorem 2.

Then
At =vziur (27)
where
v = diag (i ,i,o,... ,0) e R™™m, (28)
o5 o
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Learning theory

For given dataset {(x,y)} find the best (?) function f, such that y = f(x)
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Machine learning

The Bayesian approach, or maximum a posteriori probability (MAP) estimate, finds an x
such that maximizes the conditional probability p(x|y). According to the Bayes rule

p(x.y) _  plylx)p(x)
p(y) [ plyx)p(x)dx

therefore maximisation of p(x|y) corresponds to the following problem:

p(x|y) = o< p(y|x)p(x),
arg min(— log p(y|x) — log p(x)).
Real probability distribution functions are unknown, therefore some heuristics are used
X =arg min{L(f7X7y) + Oép(X)},
X

where /(x,y) is a loss function and p(x) is a regularization term.
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Hypothesis space

Let's consider f from Hypothesis space H.
Expected risk for given loss-function L:

E(f) = /X><Y L(f(x),y)dp(x,y) — min

Empirical risk (Tikhonov-Phillips regularization):

> L(F(xi)yi) + AlIFI5

(xi»yi)

If we consider Hypothesis space reproducing kernel Hilbert space (RKHS) generated by a
kernel K : X x X — R, by the representer theorem for RKHS, the minimizer of empirical

risk is equal to
oo = ZCIK( X;).
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Least squares method

Ax

I
<

L(x) = |Ax — y|> = min

VL(x) =2ATAx —2ATy =0
ATAx = ATy

x = Aly
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Linear least squares

Ax =y
L(x) = ||Ax — y|| = min

x=Aly + (I = ATA)v,

for any vector v.
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Applications

® Sparse and Redundant Representations
e Artificial Neural Networks for Computer Vision, Natural Language Processing

® Physics research ([Baksalary and Trenkler, 2021])

and many more...

Sir Roger Penrose was awarded the Nobel Prize in Physics in 2020
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Resistance Distance

The Moore—Penrose inverse of Laplacian matrix of a graph can be applied to study the
resistance distance between vertices of the graph.
The resistance distance between two vertices of a simple, connected graph, G, is equal to
the resistance between two equivalent points on an electrical network, constructed so as
to correspond to G, with each edge being replaced by a resistance of one ohm. It is a
metric on graphs.
The resistance distance between two vertices v and v of G can be obtained via the
formula

r(u,v) =L, +L},—2L},.

15/20



Laplacian matrix

The Laplacian matrix L(G) is an n x n matrix whose rows and columns are indexed by
vertices of G. The (i, j)-entry of L(G) is equal to deg(v;), the degree of the vertex v;, if
i=j,and it is —1 or 0 if the vertices v; and v; are adjacent or non-adjacent, respectively.

Labelled graph Degree matrix Adjacency matrix Laplacian matrix
200000 010010 2 -1 0 0 -1 0
e 030000 101010 -1 3 -1 0 -1 0
(@) 9.0 002000 010100 0 -1 2 -1 0 0
. 000300 001011 0 0 1 3 1 1
99 000030 110100 -1 -1 0 -1 3 0
00000O0T1 000100 0 0 0 -1 0 1
Undirected graph Incidence matrix Laplacian matrix
- 1 1 1 0 3 -1 -1 -1
el
\ =1l 0 0 0 =1l 1 0 0
e3
\ 7
| fes 0 -1 0 1 =1l 0 2 1
® 0 0 -1 -1 -1 0 -1 2
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Resistance distance: examples

Tetrahedral Graph Ky 3 -1 -1 -1
-1 3 -1 -1
LK) =1_1 3 -1
-1 -1 -1 3
o L 1 1 3 _1 _1 _1
1501t I R A G ¢
RKa)=1% 1 § 1 L(K)=|_% 1§ 5 I
P72 I W
2 2 2 16 16 6 16

For a complete graph K, the resistance distance between any two distinct vertices i and j
is given by the formula:

2
Rij(Ka) = — - 1z
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Resistance distance: examples

Cubical Graph Q3 _31—31—01_01—01_01 8 8

@ ~103-100-10
| o-1-1300 0-1
L@)=|10003-110

0-100-13 0-1
00-10-10 3 -1

05575778

50757587 00 0-10-1-13
1 ?;gg;??; 200 91 91 1-3

_ = 9201 91 9-31
R&) =5 |s57780557 9190139 1
75875075 11 1992-31109
78575705 U(Q3):% 91 1-3299 9 1
87757550 1 9-31 9291 9
1-391 91299
-31 1919 929
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