Multiple Perspectives on the Moore-Penrose Pseudoinverse

Theory, Computation, and Application

Galyna Kriukova

Department of Mathematics National University of Kyiv-Mohyla Academy

September 18, 2025

Inverse Problem

Find x

$$Ax = y$$

Well-posedness (aka Hadamard's conditions)

- The problem has a solution
- The solution is unique
- The solution's behavior changes continuously with the initial conditions

Well-posed problem \implies use inverse $x = A^{-1}y$ III-posed problem \implies use pseudo-inverse!

Moore-Penrose inverse

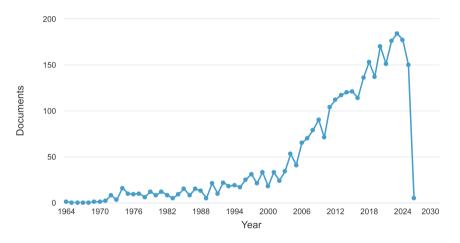


Figure 1: Number of papers published, in whose titles, abstracts or keynotes occurs the phrase "Moore–Penrose inverse" according to Elsevier Scopus (as of 17.09.2025)

Definition 12

Pseudo-inverse A^{\dagger} as generalized inverse (Moore–Penrose conditions)

- $AA^{\dagger}A = A (AA^{\dagger} \text{ is an orthogonal projector onto column spaces})$
- $A^{\dagger}AA^{\dagger}=A^{\dagger}$ (weak inverse)
- $(AA^{\dagger})^* = AA^{\dagger}$ (is Hermitian)
- $(A^{\dagger}A)^* = A^{\dagger}A$ (is Hermitian)

Every matrix A has its Moore–Penrose pseudo-inverse A^{\dagger} ; the pseudo-inverse is unique;

if A is square and non-singular, then $A^{\dagger} = A^{-1}$.

$$(A^{\dagger})^{\dagger} = A$$
, $(A^*)^{\dagger} = (A^{\dagger})^*$, $(A^T)^{\dagger} = (A^{\dagger})^T$, $A^{\dagger} = (A^*A)^{\dagger}A^* = A^*(AA^*)^{\dagger}$

¹[Moore, 1920]

²[Penrose, 1955]

Limit definition³

Limit definition

For any $A \in \mathbb{C}^{m \times n}$, as $\lambda \to 0$ through any neighborhood of 0 in \mathbb{C} , the following limits exist and

$$A_L^{\dagger} = \lim_{\lambda \to 0} (A^*A + \lambda I)^{-1}A^* = A^{\dagger}$$

 $A_R^{\dagger} = \lim_{\lambda \to 0} A^*(AA^* + \lambda I)^{-1} = A^{\dagger}$

 A^*A and AA^* are semi-positive definite and symmetric, therefore $A^*A + \lambda I$ and $AA^* + \lambda I$ are invertible

- If A has linearly independent columns (A^*A is invertible), $A^{\dagger} = (A^*A)^{-1}A^*$
- If A has linearly independent rows (AA* is invertible), $A^{\dagger} = A^*(AA^*)^{-1}$

³[Ben-Israel and Greville, 2003]

Explicit formula

Theorem (MacDuffee, 1959)

If $A \in \mathbb{C}_r^{m,n}$, r > 0, has a full-rank factorization

$$A = FG$$
,

then

$$A^{\dagger} = G^*(F^*AG^*)^{-1}F^*.$$

Moreover, $A^{\dagger} = G^{\dagger}F^{\dagger}$.

SVD

THEOREM 2 (The Singular Value Decomposition). Let $O \neq A \in \mathbb{C}_r^{m \times n}$ and let

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > 0 \tag{0.32}$$

be the singular values of A.

Then there exist unitary matrices $U \in U^{m \times m}$ and $V \in U^{n \times n}$ such that the matrix

$$\Sigma = U^*AV = \begin{bmatrix} \sigma_1 & & \vdots & & \\ & \ddots & & \vdots & O \\ & & \sigma_r & \vdots & \\ & & O & \vdots & O \end{bmatrix}$$
 (1)

is diagonal.

SVD

Corollary 1 (Penrose [635]). Let $A, \Sigma, U,$ and V be as in Theorem 2. Then

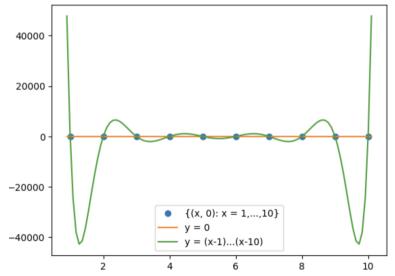
$$A^{\dagger} = V \Sigma^{\dagger} U^* \tag{27}$$

where

$$\Sigma^{\dagger} = \operatorname{diag}\left(\frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_r}, 0, \dots, 0\right) \in \mathbb{R}^{n \times m}.$$
 (28)

Learning theory

For given dataset $\{(x,y)\}$ find the best (?) function f, such that y=f(x)



Machine learning

The Bayesian approach, or maximum a posteriori probability (MAP) estimate, finds an x such that maximizes the conditional probability p(x|y). According to the Bayes rule

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{\int p(y|x)p(x)dx} \propto p(y|x)p(x),$$

therefore maximisation of p(x|y) corresponds to the following problem:

$$\arg\min_{x}(-\log p(y|x) - \log p(x)).$$

Real probability distribution functions are unknown, therefore some heuristics are used

$$\hat{x} = \arg\min_{x} \{ L(f, x, y) + \alpha \rho(x) \},$$

where I(x, y) is a loss function and $\rho(x)$ is a regularization term.

Hypothesis space

Let's consider f from Hypothesis space \mathcal{H} .

Expected risk for given loss-function *L*:

$$\mathcal{E}(f) = \int_{X \times Y} L(f(x), y) d\rho(x, y) \to \min$$

Empirical risk (Tikhonov-Phillips regularization):

$$\sum_{(x_i,y_i)} L(f(x_i),y_i) + \lambda \|f\|_{\mathcal{H}}^2$$

If we consider Hypothesis space reproducing kernel Hilbert space (RKHS) generated by a kernel $K: X \times X \to \mathbb{R}$, by the representer theorem for RKHS, the minimizer of empirical risk is equal to

$$f_{\{(x_i,y_i)\}}^{\lambda} = \sum_{x_i} c_i K(\cdot,x_i).$$

Least squares method

$$Ax = y$$

$$L(x) = ||Ax - y||^2 \to \min$$

$$\nabla L(x) = 2A^T Ax - 2A^T y = 0$$

$$A^T Ax = A^T y$$

$$x = A^{\dagger} y$$

Linear least squares

$$Ax = y$$

$$L(x) = ||Ax - y|| \to \min$$

 $x = A^{\dagger}y + (I - A^{\dagger}A)v,$

for any vector v.

Applications

- Sparse and Redundant Representations
- Artificial Neural Networks for Computer Vision, Natural Language Processing
- Physics research ([Baksalary and Trenkler, 2021]) and many more...

Sir Roger Penrose was awarded the Nobel Prize in Physics in 2020

Resistance Distance

The Moore–Penrose inverse of Laplacian matrix of a graph can be applied to study the resistance distance between vertices of the graph.

The resistance distance between two vertices of a simple, connected graph, G, is equal to the resistance between two equivalent points on an electrical network, constructed so as to correspond to G, with each edge being replaced by a resistance of one ohm. It is a metric on graphs.

The resistance distance between two vertices u and v of G can be obtained via the formula

$$r(u,v)=L_{u,u}^{\dagger}+L_{v,v}^{\dagger}-2L_{u,v}^{\dagger}.$$

Laplacian matrix

The Laplacian matrix L(G) is an $n \times n$ matrix whose rows and columns are indexed by vertices of G. The (i,j)-entry of L(G) is equal to $\deg_G(v_i)$, the degree of the vertex v_i , if i=j, and it is -1 or 0 if the vertices v_i and v_j are adjacent or non-adjacent, respectively.

Labelled graph	Degree matrix				Adjacency matrix					Laplacian matrix							
6 4-5 3-2	$\begin{pmatrix} 2 & 0 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	0 0 0 0 2 0 0 3 0 0	0 0 0 0 3	0 0 0 0 0 0	$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$	1 0 1 0 1	0 1 0 1 0	0 0 1 0 1 1	1 0 1 0 0	0 0 0 1 0 0		$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}$	-1 3 -1 0 -1 0	$0 \\ -1 \\ 2 \\ -1 \\ 0 \\ 0$	$0 \\ 0 \\ -1 \\ 3 \\ -1 \\ -1$	-1 -1 0 -1 3 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$

Undirected graph	In	cidend	e mat	rix		Laplacian matrix						
e1 e2	$\begin{pmatrix} 1 \end{pmatrix}$	1	1	0	1	3	-1	-1	-1			
e3 3	-1	0	0	0		-1	1	0	0			
/e4	0	-1	0	1	П	-1	0	2	-1			
4	/ 0	0	-1	-1/		(-1)	0	-1	2/			

Resistance distance: examples

Tetrahedral Graph K₄

$$R(K_4) = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$L(K_4) = egin{pmatrix} 3 & -1 & -1 & -1 \ -1 & 3 & -1 & -1 \ -1 & -1 & 3 & -1 \ -1 & -1 & -1 & 3 \end{pmatrix}$$

$$L^{\dagger}(K_4) = \begin{pmatrix} \frac{3}{16} & -\frac{1}{16} & -\frac{1}{16} & -\frac{1}{16} \\ -\frac{1}{16} & \frac{3}{16} & -\frac{1}{16} & -\frac{1}{16} \\ -\frac{1}{16} & -\frac{1}{16} & \frac{3}{16} & -\frac{1}{16} \\ -\frac{1}{16} & -\frac{1}{16} & -\frac{1}{16} & \frac{3}{16} \end{pmatrix}$$

For a complete graph K_n , the resistance distance between any two distinct vertices i and j is given by the formula:

$$R_{ij}(K_4) = \frac{2}{n} \cdot \mathbf{1}_{i \neq j}$$

Resistance distance: examples

Cubical Graph Q3

$$R(Q_3) = \frac{1}{12} \begin{pmatrix} 5 & 0 & 7 & 5 & 7 & 5 & 8 & 7 \\ 5 & 0 & 7 & 5 & 7 & 5 & 8 & 5 & 7 \\ 7 & 5 & 5 & 0 & 8 & 7 & 7 & 5 \\ 5 & 7 & 7 & 8 & 0 & 5 & 5 & 7 \\ 7 & 5 & 8 & 7 & 5 & 0 & 7 & 5 \\ 8 & 7 & 7 & 5 & 7 & 5 & 5 & 0 \end{pmatrix}$$

$$L(Q_3) = egin{pmatrix} 3 & -1 - 1 & 0 & -1 & 0 & 0 & 0 \ -1 & 3 & 0 & -1 & 0 & -1 & 0 & 0 \ -1 & 0 & 3 & -1 & 0 & 0 & -1 & 0 \ 0 & -1 & -1 & 3 & 0 & 0 & 0 & -1 \ -1 & 0 & 0 & 0 & 3 & -1 & -1 & 0 \ 0 & -1 & 0 & -1 & 3 & 0 & -1 \ 0 & 0 & -1 & 0 & -1 & 0 & 3 & -1 \ 0 & 0 & 0 & -1 & 0 & -1 & -1 & 3 \end{pmatrix}$$

$$R(Q_3) = \frac{1}{12} \begin{pmatrix} 0.5 & 5.7 & 5.7 & 7.8 \\ 5 & 0.7 & 5.7 & 5.8 & 7 \\ 5 & 7 & 0.5 & 7.8 & 5.7 \\ 7 & 5 & 5 & 0.8 & 7.7 & 5 \\ 5 & 7 & 7.8 & 0.5 & 5.7 \\ 7 & 5 & 8 & 7 & 5 & 7.0 & 5 \\ 8 & 7 & 7 & 5 & 7 & 5 & 5.0 \end{pmatrix}$$

$$L^{\dagger}(Q_3) = \frac{1}{96} \begin{pmatrix} 29 & 9 & 9 & 1 & 9 & 1 & 1 & -3 \\ 9 & 29 & 1 & 9 & 1 & 9 & -3 & 1 \\ 9 & 1 & 29 & 9 & 1 & -3 & 9 & 1 \\ 1 & 9 & 9 & 29 - 3 & 1 & 1 & 9 \\ 9 & 1 & 1 - 329 & 9 & 9 & 1 \\ 1 & 9 - 3 & 1 & 9 & 29 & 9 & 1 \\ 1 & 9 - 3 & 1 & 9 & 29 & 9 & 1 \\ 1 - 3 & 9 & 1 & 9 & 1 & 29 & 9 \\ -3 & 1 & 1 & 9 & 1 & 9 & 9 & 29 \end{pmatrix}$$

References

[Baksalary and Trenkler, 2021] Baksalary, O. and Trenkler, G. (2021). The moore–penrose inverse: a hundred years on a frontline of physics research. *The European Physical Journal H*, 46(1):9.

[Ben-Israel and Greville, 2003] Ben-Israel, A. and Greville, T. N. E. (2003).

Generalized Inverses: Theory and Applications.

Springer-Verlag, New York, NY, 2nd edition.

[Moore, 1920] Moore, E. (1920).

On the reciprocal of the general algebraic matrix.

Bulletin of the American Mathematical Society, 26:394-395.

[Penrose, 1955] Penrose, R. (1955).

A generalized inverse for matrices.

Mathematical Proceedings of the Cambridge Philosophical Society, 51:406–413.

Thank you!