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Algebraic graph theory

Algebraic graph theory (briefly AGT) deals

with “highly symmetric” graphs.

Symmetry of a graph Γ may be measured in

terms of the group Aut(Γ), combinatorial

invariants of Γ, or the spectrum of the

adjacency matrix A(Γ) of Γ.

Special attention to infinite families and

sporadic examples of “nice graphs”.
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Algebraic graph theory

The name AGT was coined by Norman

Biggs in his seminal book (1974), second

edition (1993).

At least a dozen of other books, in

particular by Bannai & Ito (1984),

Brouwer-Cohen-Neumaier (1989), Cameron

& van Lint (1991), Cameron (1999), Godsil

& Royle (2001).
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Algebraic graph theory

In a wider framework there is a big

intersection with a part of mathematics

called “algebraic combinatorics”.

Nowadays AC tends to mean mainly results

related to enumerative combinatorics (e.g.

in the sense of Richard Stanley).
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Algebraic graph theory

In this first lecture we start with initial

simple concepts related to finite

permutation groups and their centralizer

algebras.
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Permutation groups

A permutation group G of degree n is a

subgroup of the symmetric group Sn (of all

permutations of n points).

Typically G is presented via a (compact) set

of generators, for example

Sn = 〈(1, 2, . . . , n), (1, 2)〉.

For us each permutation group appears as a

symmetry group of “something”.
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Relational structures

According to the spirit of Marc Krasner, we

may rely on relational structures (sets of

relations of arbitrary arity).

One can speak of relational algebras.

In simple cases, just one of a few considered

relations.
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Example 1.1 (Alternating group A4)
A4 consists of all even permutations of [1, 4] and

has order 1
2 · 4! = 12.

A4 =

{(), (2, 3, 4), (2, 4, 3), (1, 2, 3), (1, 2, 4),

(1, 3, 2), (1, 3, 4), (1, 4, 2), (1, 4, 3),

(1, 3)(2, 4), (1, 2)(3, 4), (1, 4)(2, 3)}.
A4 = 〈(1, 2, 3), (1, 2, 4)〉.
A4 is 2-transitive (acts transitively on

ordered pairs of distinct elements).
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Example 1.1 (cont)
Relational structure F = {F1, F2, F3, F4}
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Arity

Due to Example 1, A4 has arity 3. This

means that A4 is the automorphism group

of relation(s) of arity 3, while it is not the

automorphism group of relation(s) of arity

2.

Arity of a permutation group of degree n is

a number in the range [0, n − 1].

We are mainly interested in permutation

groups of arity 2.
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Graphs

A (directed) graph Γ = (V ,R) consists of a

set V of vertices and a set R of arcs.

A color graph Γ is a collection of graphs on

the same vertex set (we speak about colors

of arcs).

The automorphism group Aut(Γ) of Γ

consists of all automorphisms of Γ.

An automorphism preserves each color in Γ.
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Example 1.2 (3-dimensional cube Q3)

•

•

•

•
•

•

•
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�����
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34

5 6

78

G = Aut(Q3)

|G | = 48.

G = 〈(1, 3)(5, 7), (1, 8)(2, 7), (1, 2)(3, 4)(5, 6)(7, 8)〉.

G ∼= S2 × S4.

As a permutation group: G = S2 ↑ S3
(exponentiation of S2 and S3).
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Example 1.3 (Regular elementary abelian
group E4)
E4 = {e, (1, 2)(3, 4), (1, 4)(2, 3), (1, 3)(2, 4)}

•

• •

•
Γ1

1 2

34

•

• •

•
Γ2

1 2

34

E4 = Aut(Γ = {Γ1, Γ2}).

This is a color graph. A usual graph is not

enough.
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Adjacency matrices

We use simultaneously adjacency matrices

of graphs and permutation matrices.

For a graph Γ = ([1, n],R)

A = A(Γ) is a square matrix of order n such

that for the entry aij of A on the

intersection of row i and column j

aij =

{
0 (i , j) 6∈ R ,

1 (i , j) ∈ R .
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Adjacency matrices

Matrix A is symmetric

m

Γ is an undirected graph.

Let I be the identity matrix of order n; it is

the adjacency matrix of a full reflexive

graph (its arcs are all loops (i , i), i ∈ [1, n]).
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Adjacency matrices

For a permutation g , acting on the set

[1, n], we denote by j = ig the image j of i

under the permutation g .

To each permutation g we associate its

(directed) graph D(g) (diagram of G ) with

the arc set {(i , ig)|i ∈ [1, n]} and

permutation matrix M(g) = A(D(g)).

M. Klin Coherent configurations September 2025 16 / 59



Permutations

Let us discuss a few convenient ways of

representing permutations:

In a two-row table associated with

g ∈ S(Ω), all elements of Ω are presented

in the first row with corresponding images

in the second row, i.e.,

g =

(
1 2 3 . . . n

1g 2g 3g . . . ng

)
.
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Permutations

The diagram D(g) of g is a directed graph,

the vertices of which are labeled by the

elements of Ω with an arc drawn from each

x ∈ Ω to its image xg .
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Permutations

Let Ω = {1, 2, . . . , n} and let M(g) be the

adjacency matrix of the diagram D(g), i.e.,

M(g) = (mij)1≤i ,j≤n

where

mij =

{
1 if j = ig

0 otherwise.

The matrix M(g) is called a permutation

matrix. It has precisely one nonzero entry

(equal to 1) in each row and column.
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Permutations

It is evident that

M(g−1) = (M(g))−1 = (M(g))t, where M t

denotes the matrix transpose of M . The

permutation matrix which corresponds to

the identity permutation e on Ω is the unit

matrix (or identity matrix) of order n, and is

denoted by M(e) = In.
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Permutations

For each permutation g ∈ S(Ω) the

diagram D(g) is a union of disjoint oriented

cycles. This enables us to encode each

g ∈ S(Ω) by means of a cycle

representation for g (equivalently,

decomposition as a product of disjoint

cycles).
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Permutations

Thus the diagram D(g) will consist of l

disjoint cycles of respective lengths

k1, k2, . . . , kl , and consequently its cycle

representation will be

g =(a1, a2, . . . , ak1) (b1, b2, . . . , bk2) . . .

(u1, u2, . . . , ukl ).
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Example 1.4

g =

(
1 2 3 4 5 6 7 8 9 10

3 1 5 9 6 2 7 4 8 10

)
.

We give three different cycle representations

for g , the last of which is canonical:

g = (5, 6, 2, 1, 3)(7)(9, 8, 4)(10)

= (7)(10)(8, 4, 9)(2, 1, 3, 5, 6)

= (1, 3, 5, 6, 2)(4, 9, 8).
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Example 1.4

g =

(
1 2 3 4 5 6 7 8 9 10

3 1 5 9 6 2 7 4 8 10

)
.

The corresponding permutation matrix
M(g) is:

M(g) =



0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1


.
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Permutation groups

Given a set G of permutations on a finite

set Ω, the routine procedure for proving

that G is a group is to check that it is

closed under composition.
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Example 1.3 (cont.)

Let Ω = {1, 2, 3, 4}, and

G = {g1, g2, g3, g4} where

g1 = e, g2 = (1, 2)(3, 4), g3 =

(1, 3)(2, 4), g4 = (1, 4)(2, 3).

Since g2g3 = g3g2 = g4, g2g4 = g4g2 =

g3, g3g4 = g4g3 = g2, g
2
1 = g 2

2 = g 2
3 =

g 2
4 = e, the set G is seen to be closed under

composition. Hence (G ,Ω) is a

permutation group.
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Example 1.5

Let Ω = {1, 2, 3, 4}, and let G consist of all

permutations from S(Ω) which preserve the

partition {{1, 2}, {3, 4}} of Ω (i.e., for all

g ∈ G either {1g , 2g} = {1, 2} or

{1g , 2g} = {3, 4}).

Then one can assert, without any specific

determination of the elements of G , that

(G ,Ω) is a permutation group.

M. Klin Coherent configurations September 2025 27 / 59



Example 1.5 (cont.)

In fact, as the reader can easily verify,

G =

{e, (1, 2), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4),

(1, 4)(2, 3), (1, 3, 2, 4), (1, 4, 2, 3)}.
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Stabilizers

Let (G ,Ω) be a permutation group, and let

X = {x1, x2, . . . , xk} be a subset of Ω.

We define

Gx1,...,xk := {g ∈ G | ∀i : xgi = xi},

GX = G{x1,...,xk} := {g ∈ G | X g = X },

where X g = {xg1 , x
g
2 , . . . , x

g
k }.
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Stabilizers

Again it is easy to see that Gx1,...,xk and

G{x1,...,xk} are subgroups of G which are

called the pointwise stabilizer of X in G and

the setwise stabilizer of X in G ,

respectively. (If X = {x}, the notions of Gx

and G{x} coincide and only the first

notation will be used.)
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Orbits

We say x , y ∈ Ω belong to the same orbit

of the permutation group (G ,Ω) if y = xg

for some g ∈ G .

Obviously, the set of all distinct orbits of

(G ,Ω) forms a partition of Ω, i.e., different

orbits have empty intersection and the

union of all orbits is equal to Ω.
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Transitive groups

The number |O| of elements which belong

to an orbit O is called its length.

A permutation group (G ,Ω) is called

transitive if Ω is its only orbit, otherwise it

is intransitive.
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Proposition 1.1 (Reformulation of
Lagrange’s theorem)

Let (G ,Ω) be a permutation group, and for each

x ∈ Ω, let O(x) denote the orbit of (G ,Ω)

which contains x. Then

|O(x)| = [G : Gx ], and consequently

|G | = |Gx | · |O(x)|.
In particular, the length of each orbit divides the

order of the group.
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Proof

Consider the partition of G into right cosets with

respect to the stabilizer Gx of x . These cosets

are clearly in one-to-one correspondence with the

elements of O(x); indeed, the coset Gxg

consists of those and only those permutations of

G which map x to xg . The result follows.

Proposition 1.1 is commonly called the

Orbit-Stabilizer Theorem.
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Induced action on Ω2

Let g ∈ S(Ω). The action of g on Ω can be

extended to an induced action of g on Ω2

by defining (a, b)g := (ag , bg) for each

(a, b) ∈ Ω2.

A subset R ⊂ Ω2 is called a binary relation

on Ω. For any binary relation R on Ω and

element g ∈ S(Ω), we define

Rg = {(x , y)g | (x , y) ∈ R}.
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Invariant relations

In general Rg 6= R .

If Rg = R we say g preserves R or,

equivalently, that R is invariant with respect

to g .

Likewise, if Rg = R for every g ∈ (G ,Ω)

then we say (G ,Ω) preserves R or that R is

invariant with respect to (G ,Ω).
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Example 1.6

1

2

3

4

5

6

7

8

9

�����

77777

77777

�����

Consider the undirected graph Γ = (Ω,R)

with vertex set Ω = {1, 2, . . . , 9} and edges

as depicted.

Set G = Aut(Γ).

We prove |G | = 16 by successively applying

Proposition 1.1.
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Example 1.6 (cont.)

First, it is visually evident that the orbits of

(G ,Ω) are given by:

{1, 2, 8, 9}, {3, 7}, {4, 6}, {5}.

Thus a first application of Proposition 1.1

gives |G | = |O(1)| · |G1| = 4 · |G1|.
Now, letting OG1(8) denote the orbit

containing 8 under the action of (G1,Ω), we

get |G1| = |OG1(8)| · |G1,8| = 2 · |G1,8|.
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Example 1.6 (cont.)

One further application of 1.1, together with

the observation that G1,8,4 = {e}, gives

|G1,8| = |OrbG1,8(4)|·|G1,8,4| = 2·|G1,8,4| = 2.

So:

|G | = 4 · 2 · 2 = 16.
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Proposition 1.2

Let Γ = (Ω,R) be a graph. For g ∈ S(Ω),

denote by Γg its isomorphic image Γg = (Ω,Rg)

under g . Then

A(Γg) = M(g)−1A(Γ)M(g),

where A(Γ) and A(Γg) are the respective

adjacency matrices for Γ and Γg and M(g) is the

permutation matrix associated with g.
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Proposition 1.2
In particular g ∈ Aut(Γ) if and only if

M(g)−1A(Γ)M(g) = A(Γ)

or, equivalently,

A(Γ)M(g) = M(g)A(Γ).

In words, the permutation g is an automorphism

of Γ if and only if A(Γ) commutes with M(g).

M. Klin Coherent configurations September 2025 41 / 59



Proof

Let Eij be the matrix of order n = |Ω| in

which the (i , j)-entry is equal to 1 and all

other entries are equal to 0.

Clearly,

A(Γ) =
∑

(i ,j)∈R

Eij .

Setting k = ig and l = jg , it is easy to see

that M(g)−1Eij = M(g−1)Eij = Ekj and

EkjM(g) = Ekl .
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Proof

Thus, we have

M(g)−1EijM(g) = Ekl .

But then

M(g)−1A(Γ)M(g) =

M(g)−1
(∑

(i ,j)∈R Eij

)
M(g) =∑

(i ,j)∈R M(g)−1EijM(g) =
∑

(i ,j)∈R Eig jg =

A(Γg).
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Centralizer algebra

Proposition 1.2 motivates us to define the

centralizer ring and centralizer algebra of a

permutation group.

In what follows Z will denote the ring of

integers, C the field of complex numbers,

and Mn(K ) the set of order n matrices with

values from K .
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Centralizer algebra

The centralizer ring of the permutation

group (G ,Ω) is the ring of all integer-valued

matrices which commute with every

permutation matrix M(g), g ∈ G , i.e.,

VZ(G ,Ω) = {A ∈ Mn(Z) |
AM(g) = M(g)A ∀g ∈ (G ,Ω) }.
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Centralizer algebra

Analogously, replacing integer-valued

matrices by complex-valued matrices, we

obtain the definition for the centralizer

algebra of (G ,Ω):

VC(G ,Ω) = {A ∈ Mn(C) |
AM(g) = M(g)A ∀g ∈ (G ,Ω) }.
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Centralizer algebra

When there is no risk of confusion, or when

the distinction is not considered to be

crucial, we shall express each of VZ(G ,Ω)

and VC(G ,Ω) simply as V(G ,Ω).
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Example 1.7 (Cycle C4)
••

• •

21

4 3

Aut(C4) = D4, dihedral group of order 8.

D4 = 〈(1, 2, 3, 4), (1, 3)〉.
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


A(Γ) M((1, 2, 3, 4)) M((1, 3))
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Centralizer algebra

Start from a permutation group (G ,Ω) of

degree n.

Consider it as a group of permutation

matrices.

Find its centralizer V in the algebra Mn(F )

of matrices of order n.

V = V (G ,Ω) is called the centralizer

algebra of (G ,Ω).

The name was coined by Issai Schur.
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Centralizer algebra

V (G ,Ω) has (as a vector space) a special

basis, which consists of (0, 1)-matrices.

These matrices can be regarded as

adjacency matrices of graphs with n

vertices.

V is the same as full color graph.

In addition, we get structure constants of

the algebra V .
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Example 1.8 (Cycle C6)

•
•

•
•
•
•

MMMM

qqqqMMMM

qqqq

Aut(C6) = D6, dihedral group of order 12.

V (D6) has dimension (rank) 4.
Basic matrices: 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

 0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 ,

 0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0

 ,

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


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Example 1.8 (cont.)

Corresponding graphs:

•
•

•
•
•
•

MMMM

qqqqMMMM

qqqq •
•

•
•
•
•

111111111










111111111












•
•

•
•
•
•qqqqqqqqqqMMMMMMMMMM

Γ1 Γ2 Γ3

intersection matrices:(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) (
0 1 0 0
2 0 1 0
0 1 0 2
0 0 1 0

) (
0 0 1 0
0 1 0 2
2 0 1 0
0 1 0 0

) (
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
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Example 1.8 (cont.)

Distance decomposition:

4
•

4

�
◦

�

MMM

qqqqMMMM

qqq

Intersection diagram:

◦ ◦ ◦ ◦2 1 1 1 1 2

1 2 2 1
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Intersection algebra

Matrix algebra V (G ,Ω) consists of matrices

of order n.

Intersection algebra P(G ,Ω) consists of

matrices of order r .
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Intersection algebra

Theorem 1.1
Algebras V (G ,Ω) and P(G ,Ω) are isomorphic

as matrix algebras.

In Example 1.8, n = 6, r = 4.

Typically, the difference is more essential.

M. Klin Coherent configurations September 2025 55 / 59



Proof outline

See theorem 3.4 of Cameron’s book.

A helpful identity for intersection numbers.

Proof of the identity (combinatorial or

algebraic).

Combinatorial hints.

This is really isomorphism.
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Historical comments

Bose & Mesner (1959) in particular case.

Tradition to attribute general result to H.

Wielandt.

(Discussion at the evening.)
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Main references

P.J. Cameron, “Permutation Groups,” London
Mathematical Society Student Texts, 45, Cambridge
University Press, Cambridge, 1999.
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Thank You!
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