Coherent configurations Lecture 2 Coherent configurations and coherent algebras

Mikhail Klin (Ben-Gurion University)

September 2025

- The essential properties of centralizer algebras are axiomatized.
- We get definition of coherent algebras.
- Relational language of coherent configurations.
- Origins:
 - B. Weisfeiler & A. Leman (Moscow, 1968): cellular algebras;
 - D. Higman (USA, 1970): coherent configurations.

Combinatorial imitation

- Coherent configurations (algebras) provide a basis for combinatorial imitation of permutation groups.
- Structure constants aka intersection numbers have a definite combinatorial spirit: numbers of walks in color graph.
- How far does this imitation go?

Axiomatization

- Let $W \subseteq M_n(\mathbb{C})$ be a matrix algebra over \mathbb{C} which fulfills the following requirements:
 - CA1. Considered as a vector space over \mathbb{C} , the algebra \mathcal{W} has a basis $\{A_1, A_2, \dots, A_r\}$ where each A_i is a (0,1)-matrix, $1 \leq i \leq r$;
 - CA2. $\sum_{i=1}^{r} A_i = J_n$, where J_n is the matrix of order n every entry of which is equal to 1;
 - CA3. For each $i \in \{1, 2, ..., r\}$ there is an $i' \in \{1, 2, ..., r\}$ such that $A_i^t = A_{i'}$;
 - CA4. The identity matrix I_n belongs to W.

Standard basis

- In this case we call W a coherent algebra with standard basis $\{A_1, A_2, \dots, A_r\}$.
- We indicate this all at once by writing

$$\mathcal{W} = \langle A_1, A_2, \ldots, A_r \rangle.$$

Coherent rings

- Given a coherent algebra \mathcal{W} , the set $\mathcal{W}' = \mathcal{W} \cap M_n(\mathbb{Z})$ of all integer-valued matrices from \mathcal{W} is both a ring and a \mathbb{Z} -module.
- A matrix ring with this property is called a coherent ring, denoted by $\mathcal{W}' = \langle A_1, \dots, A_r \rangle_{\mathbb{Z}}.$

Cellular algebras

- If we suppress axiom CA4 in the definition of coherent algebra, we obtain what is called a cellular algebra. The term "cellular algebra" can be traced to the Soviet school of algebraic combinatorics, having been introduced by B.Ju. Weisfeiler and A.A. Leman in 1968.
- Thus, a cellular algebra is a matrix algebra over $\mathbb C$ which satisfies axioms CA1–CA3.

Relational language

- Now we shall formulate coherent algebras in terms of a relational language.
- Let $X = \{1, 2, ..., n\}$, and let us consider a collection $\mathcal{R} = \{R_1, R_2, ..., R_r\}$ of binary relations on X.

Axiomatization

• If the following conditions hold:

```
CC1. R_i \cap R_j = \emptyset for 1 \le i \ne j \le r;
```

- CC2. $\bigcup_{i=1}^{r} R_i = X^2$;
- CC3. For each $i \in \{1, 2, ..., r\}$ there is an $i' \in \{1, 2, ..., r\}$ such that $R_i^t = R_{i'}$;
- CC4. There exists a subset $I' \subseteq \{1, ..., r\}$ such that $\bigcup_{i \in I'} R_i = \Delta$, (here $\Delta = \{(x, x) \mid x \in X\}$);
- CC5. For each $i, j, k \in \{1, 2, ..., r\}$ the number of elements $z \in X$ for which $(x, z) \in R_i$ and $(z, y) \in R_j$ is constant provided that $(x, y) \in R_k$. We denote this constant by p_{ij}^k .
- $\mathfrak{M} = (X, \mathcal{R})$ is a coherent configuration.

Equivalence of axiomatizations

- Given a coherent configuration $\mathfrak{M}=(X,\mathcal{R})$, we consider the graph $\Gamma_i=(X,R_i)$ defined by the relation R_i and we let $A_i=A(\Gamma_i)$ be its adjacency matrix.
- In this case $W = \langle A_1, A_2, \dots, A_r \rangle$ is indeed a coherent algebra.
- Note a natural correspondence between axioms CA1-CA4 of a coherent algebra and axioms CC1-CC4 given above.

Fifth axiom

• Axiom CC5 ensures that each product A_iA_j is a linear combination of the matrices A_1, \ldots, A_r . (More precisely, axiom CC5 is equivalent to the fact that a coherent algebra is, by definition, a matrix algebra.)

Equivalence of axiomatizations

• Conversely, given a coherent algebra \mathcal{W} we can easily construct a corresponding coherent configuration \mathfrak{M} by interpreting each matrix A_i as the adjacency matrix of a graph having arc set R_i .

2-orbits

- An important class of examples of coherent configurations is provided by the so-called 2-orbits of permutation groups.
- This terminology was introduced by Wielandt and is equivalent to the language of centralizer algebras of permutation groups.

2-orbits

- Let (G,Ω) be a permutation group. We consider the naturally induced action of G on Ω^2 as follows: For $(a,b) \in \Omega^2$ and $g \in G$ we define $(a,b)^g = (a^g,b^g)$.
- The set of orbits of (G, Ω^2) will be denoted by 2-orb (G, Ω) (following Wielandt).
- We shall refer to the elements of 2-orb(G, Ω) as 2-orbits of (G, Ω).

2-orbits

- Given any permutation group (G, Ω) , the pair $(\Omega, 2\text{-orb}(G, \Omega))$ is clearly a coherent configuration.
- One may establish this fact by checking axioms CC1–CC5 directly, although this is not necessary.
- Indeed, one need only observe that $(\Omega, 2\text{-orb}(G, \Omega))$ corresponds to the coherent algebra $V(G, \Omega)$.

Example 2.1 (K_4)

Consider the complete graph K_4 with vertex set $X_1 = \{1, 2, 3, 4\}$. We label the edges of K_4 by the elements of $X_2 = \{5, 6, 7, 8, 9, 10\}$ in a fixed but arbitrary manner, and we designate by e(x)the edge of K_4 which carries the label $x \in X_2$. Then the symmetric group $S_4 = S(X_1)$ acts intransitively on the set $X := X_1 \cup X_2$ with orbits X_1 and X_2 .

- The 2-orbits of this action:
- $R_1 = \{(x, x) \mid x \in X_1\}, R_2 = \{(x, x) \mid x \in X_2\},\ R_3 = \{(x, y) \mid x, y \in X_1, x \neq y\},\ R_4 = \{(x, y) \mid x, y \in X_2, x \neq y, e(x) \cap e(y) \neq \emptyset\},\ R_5 = \{(x, y) \mid x, y \in X_2, e(x) \cap e(y) = \emptyset\},\ R_6 = \{(x, y) \mid x \in X_1, y \in X_2, x \in e(y)\},\ R_7 = \{(x, y) \mid x \in X_1, y \in X_2, x \notin e(y)\},\ R_8 = \{(x, y) \mid x \in X_2, y \in X_1, y \in e(x)\},\ R_9 = \{(x, y) \mid x \in X_2, y \in X_1, y \notin e(x)\}.$
- Resulting from this action, one obtains the coherent configuration $\mathfrak{M}=(X,\mathcal{R})$, where $\mathcal{R}=\{R_1,R_2,\ldots,R_9\}$.

SH-product

- A non-standard matrix multiplication called Schur-Hadamard multiplication (SH-multiplication, for short).
- Let $A = (a_{ij})$ and $B = (b_{ij})$ be two square matrices of order n, and define

$$c_{ij}=a_{ij}b_{ij}, \quad 1\leq i,j\leq n.$$

• The matrix $C = (c_{ij})$ is called the Schur-Hadamard product of A and B and it is denoted by $C = A \circ B$.

- Every coherent algebra is closed with respect to SH-multiplication.
- By linearity one need only verify this for Schur-Hadamard products of basis matrices.
- As these are (0,1)-matrices, one clearly has $A_i \circ A_i = A_i$, and $A_i \circ A_j = O$ for all $i \neq j$, where O denotes the matrix of order n all of whose entries are equal to 0.

Schur-Wielandt Principle

- Let \mathcal{W} be a coherent algebra, and let $X=(x_{ij})\in\mathcal{W}.$
- For arbitrary $\nu \in \mathbb{C}$ define $Y_{\nu}(X) = (y_{ij})$ (cross-section of X by ν) by

$$y_{ij} = \begin{cases} \nu & \text{if} \quad x_{ij} = \nu, \\ 0 & \text{otherwise.} \end{cases}$$

• Then $Y_{\nu}(X) \in \mathcal{W}$ for all $\nu \in \mathbb{C}$.

Proof

- If $x_{ij} \neq \nu$ for all i, j then $Y_{\nu}(X) = O \in \mathcal{W}$.
- So assume $x_{st} = \nu$ and define the matrix $T_1 = X X \circ A_{k_1}$, where A_{k_1} is the unique basis matrix for which $(A_{k_1})_{st} = 1$.
- Clearly T_1 is in \mathcal{W} and has fewer entries equal to ν than did X.

Proof

- One repeats the procedure by defining $T_2 = T_1 T_1 \circ A_{k_2} (= X (X \circ A_{k_1} + X \circ A_{k_2}))$ and so on, until the matrix T_q obtained on the qth iteration is free from entries equal to ν .
- Then one has

$$Y_{\nu}(X) = X \circ A_{k_1} + X \circ A_{k_2} + \cdots + X \circ A_{k_q}$$

 $(= \nu(A_{k_1} + A_{k_2} + \cdots + A_{k_q})),$

which is clearly an element of \mathcal{W} .

Corollary

- Assume $\nu \neq 0$.
- For any matrix $X \in \mathcal{W}$, there exists a subset $K = \{k_1, k_2, \dots, k_q\}$ of $\{1, 2, \dots, r\}$ for which

$$\frac{1}{\nu} Y_{\nu}(X) = \sum_{k_i \in K} A_{k_i}.$$

Proposition 2.1

A subspace W of $M_n(\mathbb{C})$ is a coherent algebra if and only if W contains the matrices I_n and J_n and is closed with respect to the operations of matrix multiplication, SH-multiplication, and conjugate-transposition.

 Proof will be discussed in the exercise meeting.

Proposition 2.2

Let W_1 and W_2 be two coherent algebras of order n. Then their intersection $W = W_1 \cap W_2$ is also a coherent algebra of order n.

 Proof: this is an immediate corollary of Proposition 2.1.

- Let W_1 and W_2 be coherent algebras with $W_1 \subseteq W_2$. Then W_1 is called a *coherent* subalgebra of W_2 .
- Let $A \in M_n(\mathbb{C})$ be arbitrary. The minimal coherent algebra which contains A is called the *coherent algebra generated by* A and will be denoted by $\langle\langle A\rangle\rangle$.

- In similar fashion, one more generally defines the coherent algebra $\langle \langle A_1, A_2, \dots, A_k \rangle \rangle$ generated by the matrices A_1, A_2, \dots, A_k .
- Clearly, if $\{A_1, A_2, \ldots, A_r\}$ is the standard basis of a coherent algebra \mathcal{W} , then one has $\langle\langle A_1, A_2, \ldots, A_r \rangle\rangle = \langle A_1, A_2, \ldots, A_r \rangle = \mathcal{W}$

- The definitions given above make sense since, by Proposition 2.2, any intersection of coherent algebras is again a coherent algebra.
- $\langle\langle A\rangle\rangle$ may be interpreted as the intersection of all coherent subalgebras of $M_n(\mathbb{C})$ which contain A.

- Let C(A) denote the set of all such subalgebras.
- $\mathcal{C}(A) \neq \emptyset$ since it contains the coherent algebra $\mathcal{V}_{\mathbb{C}}(\{e\}, \{1, 2, \dots, n\}) = M_n(\mathbb{C})$.
- Thus

$$\langle\langle A \rangle\rangle = \bigcap_{\mathcal{W} \in \mathcal{C}(A)} \mathcal{W}.$$

Computation

- At the moment we do not wish to discuss in evident form, various algorithms for constructing \(\langle A \rangle \rangle \).
- Nonetheless, we mention an extremely effective algorithm which accomplishes this, namely Weisfeiler-Leman stabilization.
- The following examples demonstrate how (\langle A \rangle \rangle can be constructed using certain tricks based mainly on the Schur-Wielandt principle.

Example 2.2

- Let Γ be the above graph and let $A = A(\Gamma)$ be its adjacency matrix.
- We wish to determine $\mathcal{W} = \langle \langle A \rangle \rangle$.
- Clearly, $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

- All we know from the outset is that $A, I_4, J_4 \in \langle \langle A \rangle \rangle$.
- Since $\langle\langle A\rangle\rangle$ is a linear space, we get $\bar{A}\in\langle\langle A\rangle\rangle$ where

$$\bar{A} = J_4 - I_4 - A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$

• Now, since $\langle \langle A \rangle \rangle$ is closed under matrix multiplication, it must contain the two additional matrices:

•
$$A^2 = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
 and

$$\bullet \ \bar{A}^2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 2 & 2 \end{pmatrix}.$$

• Applying the Schur-Wielandt principle, we further obtain $B_1, B_2 \in \langle \langle A \rangle \rangle$, where

•
$$B_2 = \frac{1}{2}Y_2(\bar{A}^2) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

- Redefining $B_3 = A$ and $B_4 = \overline{A}$, we now have four (0,1)-matrices B_1 , B_2 , B_3 , B_4 of $\langle \langle A \rangle \rangle$ which have mutually disjoint support and sum to J_4 .
- However, these four matrices do not constitute a basis for $\langle \langle A \rangle \rangle$, since $\langle \langle A \rangle \rangle$ must additionally contain all products of the form B_iB_i for $i,j \in \{1,2,3,4\}$.

• In particular, $B_1B_3=\begin{pmatrix} 0&1&1&1\\0&0&0&0\\0&0&0&0\\0&0&0&0 \end{pmatrix}$ and $B_3B_1=\begin{pmatrix} 0&0&0&0\\1&0&0&0\\1&0&0&0 \end{pmatrix}$ must be elements of $\langle\langle A\rangle\rangle$, resulting in a "desymmetrization" of the matrix A

• This gives a new set of five matrices:

$$C_1 = B_1, \ C_2 = B_2, \ C_3 = B_1A, \ C_4 = AB_1,$$
 $C_5 = B_4$, which turns out to provide the desired basis for $\langle \langle A \rangle \rangle$.

• Indeed, all matrix products of the form $C_i C_j$ are elements of $\langle C_1, \ldots, C_5 \rangle$, as is readily verifiable from the following table of products.

		C_1	C_2	C_3	C_4	C_5
	C_1	_	_	C_3	0	0
	C_2	1	C_2		C_4	C_5
	C_3	0	C_3	0	3 <i>C</i> ₁	2 <i>C</i> ₃
	C_4	C_4	0	$C_2 + C_5$	0	0
	C_5	0	C_5	0	2 <i>C</i> ₄	$2 C_2 + C_5$

- To this point we have shown that $\langle C_1, \ldots, C_5 \rangle$ is a matrix algebra in the usual sense.
- As the C_i 's have mutually disjoint support, $\langle C_1, \ldots, C_5 \rangle$ is closed under SH-multiplication.
- As $C_1^t = C_1$, $C_2^t = C_2$, $C_3^t = C_4$, $C_4^t = C_3$, and $C_5^t = C_5$, it is closed under conjugate-transposition.

- Finally, as $J_4 = C_1 + C_2 + C_3 + C_4 + C_5$ and $I_4 = C_1 + C_2$, we conclude that $\langle C_1, \ldots, C_5 \rangle$ is a coherent algebra.
- By construction,

$$A \in \langle C_1, \ldots, C_5 \rangle \subseteq \langle \langle A \rangle \rangle.$$

• Hence, $\langle C_1, \ldots, C_5 \rangle = \langle \langle A \rangle \rangle$.

Example 2.3 (Octahedron)

- Now we will proceed with another example of a coherent algebra, using essentially that it is also a centralizer algebra.
- Namely, we start with the octahedron \mathcal{O} .

- Let g = (2, 3, 4, 5), h = (1, 2, 3)(4, 5, 6).
- Check that $g, h \in Aut(\mathcal{O})$.
- Check that $H = \langle g, h \rangle$ is a transitive group of degree 6.
- |H| = 24.
- We wish to construct W = V(H, [1, 6]).

- Construct $\mathcal{W}_1=V(\langle g
 angle,[1,6])$ and $\mathcal{W}_2=V(\langle h
 angle,[1,6]).$
- Check that both algebras, by coincidence, have rank 12.
- They are presented by matrices

$$A_{1} = \begin{pmatrix} 1 & 4 & 4 & 4 & 4 & 5 \\ 6 & 2 & 7 & 8 & 9 & 10 \\ 6 & 9 & 2 & 7 & 8 & 10 \\ 6 & 8 & 9 & 2 & 7 & 10 \\ 6 & 7 & 8 & 9 & 2 & 10 \\ 11 & 12 & 12 & 12 & 12 & 3 \end{pmatrix} A_{2} = \begin{pmatrix} 13 & 14 & 15 & 16 & 17 & 18 \\ 15 & 13 & 14 & 18 & 16 & 17 \\ 14 & 15 & 13 & 17 & 18 & 16 \\ 19 & 20 & 21 & 24 & 22 & 23 \\ 21 & 19 & 20 & 23 & 24 & 22 \\ 20 & 21 & 19 & 22 & 23 & 24 \end{pmatrix}$$

- Now $W = W_1 \cap W_2$ is the intersection of algebras W_1 and W_2 .
- To get description of \mathcal{W} consider auxiliary bipartite graph Δ , vertices of which correspond to entries of A_1 and A_2 (12+12 vertices).
- Two vertices x, y are adjacent if there exists a cell occupied in A₁ and A₂ by x and y respectively.

- Connectivity components of the graph Δ define matrix for color graph $\mathcal{W} = \mathcal{W}_1 \cap \mathcal{W}_2$.
- It has rank 3.
- Different colors correspond to vertices (loops), edges and non-edges of \mathcal{O} .

$$\bullet A = \begin{pmatrix} 1 & 2 & 2 & 2 & 2 & 3 \\ 2 & 1 & 2 & 3 & 2 & 2 \\ 2 & 2 & 1 & 2 & 3 & 2 \\ 2 & 3 & 2 & 1 & 2 & 2 \\ 2 & 3 & 2 & 2 & 2 & 1 \end{pmatrix}.$$

Schurian coherent algebras

- We call a coherent algebra W Schurian if it coincides with the centralizer algebra of a suitable permutation group.
- In the previous example, W_1 , W_2 , W are all Schurian algebras of ranks 12, 12 and 3 respectively.
- Otherwise, \mathcal{W} is called non-Schurian.

I. Schur

- The name goes back to Schur, who was considering (1933) Schur rings, a special kind of coherent algebras which are simultaneously group algebras (rings).
- Schur believed that all Schur rings are coming from a centralizer algebra of a suitable permutation group.

Non-Schurian

- The smallest counterexamples to the conjecture of Schur in wider context, non-Schurian association schemes, exist on 15, 16, 18 vertices.
- The desired property may be established by group-theoretical or combinatorial arguments.
- In any case this it quite a routine activity (computer is very helpful).

Example 2.4 (DRT on 15 vertices)

- Doubly regular tournament Γ, its opposite graph Γ^t and the reflexive relation form coherent configuration of rank 3.
- The parameters are (15, 7, 3, 4), that is $A(\Gamma)^2 = 4A(\Gamma) + 3A(\Gamma)^t$
- It is non-Schurian: $Aut(\Gamma)$ has order 21, while Γ has $\frac{15\cdot 14}{2}=105$ arcs.

- Alternative (combinatorial) proof: count the number of induced subgraphs with 5 vertices of prescribed isomorphism types;
- Distinguish arcs of Γ , using these invariants.

Main references

- Klin, Mikhail; Rücker, Christoph; Rücker, Gerta; Tinhofer, Gottfried. Algebraic combinatorics in mathematical chemistry. Methods and algorithms. I. Permutation groups and coherent (cellular) algebras. MATCH No. 40 (1999), 7–138.
- Pasechnik, Dmitrii V. Skew-symmetric association schemes with two classes and strongly regular graphs of type $L_{2n-1}(4n-1)$. Interactions between algebra and combinatorics. Acta Appl. Math. 29 (1992), no. 1-2, 129–138.

Thank You!