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Coherent algebras

The essential properties of centralizer

algebras are axiomatized.

We get definition of coherent algebras.

Relational language of coherent

configurations.
Origins:

B. Weisfeiler & A. Leman (Moscow, 1968):
cellular algebras;
D. Higman (USA, 1970): coherent
configurations.
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Combinatorial imitation

Coherent configurations (algebras) provide a

basis for combinatorial imitation of

permutation groups.

Structure constants aka intersection

numbers have a definite combinatorial

spirit: numbers of walks in color graph.

How far does this imitation go?
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Axiomatization

Let W ⊆ Mn(C) be a matrix algebra over
C which fulfills the following requirements:

CA1. Considered as a vector space over C, the
algebra W has a basis {A1,A2, . . . ,Ar}
where each Ai is a (0, 1)-matrix, 1 ≤ i ≤ r ;

CA2.
∑r

i=1 Ai = Jn, where Jn is the matrix of order
n every entry of which is equal to 1;

CA3. For each i ∈ {1, 2, . . . , r} there is an
i ′ ∈ {1, 2, . . . , r} such that At

i = Ai ′;
CA4. The identity matrix In belongs to W .
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Standard basis

In this case we call W a coherent algebra

with standard basis {A1,A2, . . . ,Ar}.
We indicate this all at once by writing

W = 〈A1,A2, . . . ,Ar〉.
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Coherent rings

Given a coherent algebra W , the set

W ′ =W ∩Mn(Z) of all integer-valued

matrices from W is both a ring and a

Z-module.

A matrix ring with this property is called a

coherent ring, denoted by

W ′ = 〈A1, . . . ,Ar〉Z.
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Cellular algebras

If we suppress axiom CA4 in the definition of

coherent algebra, we obtain what is called a

cellular algebra. The term “cellular algebra”

can be traced to the Soviet school of

algebraic combinatorics, having been

introduced by B.Ju. Weisfeiler and

A.A. Leman in 1968.

Thus, a cellular algebra is a matrix algebra

over C which satisfies axioms CA1–CA3.
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Relational language

Now we shall formulate coherent algebras in

terms of a relational language.

Let X = {1, 2, . . . , n}, and let us consider a

collection R = {R1,R2, . . . ,Rr} of binary

relations on X .
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Axiomatization

If the following conditions hold:
CC1. Ri ∩ Rj = ∅ for 1 ≤ i 6= j ≤ r ;
CC2. ∪ri−1Ri = X 2;
CC3. For each i ∈ {1, 2, . . . , r} there is an

i ′ ∈ {1, 2, . . . , r} such that R t
i = Ri ′;

CC4. There exists a subset I ′ ⊆ {1, . . . r} such that
∪i∈I ′Ri = ∆, (here ∆ = {(x , x) | x ∈ X});

CC5. For each i , j , k ∈ {1, 2, . . . , r} the number of
elements z ∈ X for which (x , z) ∈ Ri and
(z , y) ∈ Rj is constant provided that
(x , y) ∈ Rk . We denote this constant by pkij .

M = (X ,R) is a coherent configuration.
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Equivalence of axiomatizations

Given a coherent configuration

M = (X ,R), we consider the graph

Γi = (X ,Ri) defined by the relation Ri and

we let Ai = A(Γi) be its adjacency matrix.

In this case W = 〈A1,A2, . . . ,Ar〉 is indeed

a coherent algebra.

Note a natural correspondence between

axioms CA1-CA4 of a coherent algebra and

axioms CC1-CC4 given above.
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Fifth axiom

Axiom CC5 ensures that each product AiAj

is a linear combination of the matrices

A1, . . . ,Ar . (More precisely, axiom CC5 is

equivalent to the fact that a coherent

algebra is, by definition, a matrix algebra.)
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Equivalence of axiomatizations

Conversely, given a coherent algebra W we

can easily construct a corresponding

coherent configuration M by interpreting

each matrix Ai as the adjacency matrix of a

graph having arc set Ri .
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2-orbits

An important class of examples of coherent

configurations is provided by the so-called

2-orbits of permutation groups.

This terminology was introduced by

Wielandt and is equivalent to the language

of centralizer algebras of permutation

groups.

M. Klin Coherent configurations September 2025 13 / 55



2-orbits

Let (G ,Ω) be a permutation group. We

consider the naturally induced action of G

on Ω2 as follows: For (a, b) ∈ Ω2 and

g ∈ G we define (a, b)g = (ag , bg).

The set of orbits of (G ,Ω2) will be denoted

by 2-orb(G ,Ω) (following Wielandt).

We shall refer to the elements of

2-orb(G ,Ω) as 2-orbits of (G ,Ω).
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2-orbits

Given any permutation group (G ,Ω), the

pair (Ω, 2-orb(G ,Ω)) is clearly a coherent

configuration.

One may establish this fact by checking

axioms CC1–CC5 directly, although this is

not necessary.

Indeed, one need only observe that

(Ω, 2-orb(G ,Ω)) corresponds to the

coherent algebra V (G ,Ω).
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Example 2.1 (K4)
Consider the complete graph K4 with vertex set

X1 = {1, 2, 3, 4}. We label the edges of K4 by

the elements of X2 = {5, 6, 7, 8, 9, 10} in a fixed

but arbitrary manner, and we designate by e(x)

the edge of K4 which carries the label x ∈ X2.

Then the symmetric group S4 = S(X1) acts

intransitively on the set X := X1 ∪ X2 with

orbits X1 and X2.

M. Klin Coherent configurations September 2025 16 / 55



Example 2.1 (cont.)
The 2-orbits of this action:
R1 = {(x , x) | x ∈ X1}, R2 = {(x , x) | x ∈ X2},
R3 = {(x , y) | x , y ∈ X1, x 6= y},
R4 = {(x , y) | x , y ∈ X2, x 6= y , e(x)∩ e(y) 6= ∅},
R5 = {(x , y) | x , y ∈ X2, e(x) ∩ e(y) = ∅},
R6 = {(x , y) | x ∈ X1, y ∈ X2, x ∈ e(y)},
R7 = {(x , y) | x ∈ X1, y ∈ X2, x 6∈ e(y)},
R8 = {(x , y) | x ∈ X2, y ∈ X1, y ∈ e(x)},
R9 = {(x , y) | x ∈ X2, y ∈ X1, y 6∈ e(x)}.

Resulting from this action, one obtains the

coherent configuration M = (X ,R), where

R = {R1,R2, . . . ,R9}.
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SH-product

A non-standard matrix multiplication called

Schur-Hadamard multiplication

(SH-multiplication, for short).

Let A = (aij) and B = (bij) be two square

matrices of order n, and define

cij = aijbij , 1 ≤ i , j ≤ n.

The matrix C = (cij) is called the

Schur-Hadamard product of A and B and it

is denoted by C = A ◦ B .
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Coherent algebras

Every coherent algebra is closed with

respect to SH-multiplication.

By linearity one need only verify this for

Schur-Hadamard products of basis matrices.

As these are (0, 1)-matrices, one clearly has

Ai ◦ Ai = Ai , and Ai ◦ Aj = O for all i 6= j ,

where O denotes the matrix of order n all of

whose entries are equal to 0.
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Schur-Wielandt Principle

Let W be a coherent algebra, and let

X = (xij) ∈ W .

For arbitrary ν ∈ C define Yν(X ) = (yij)

(cross-section of X by ν) by

yij =

{
ν if xij = ν,

0 otherwise.

Then Yν(X ) ∈ W for all ν ∈ C.
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Proof

If xij 6= ν for all i , j then Yν(X ) = O ∈ W .

So assume xst = ν and define the matrix

T1 = X − X ◦ Ak1, where Ak1 is the unique

basis matrix for which (Ak1)st = 1.

Clearly T1 is in W and has fewer entries

equal to ν than did X .
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Proof

One repeats the procedure by defining

T2 = T1−T1◦Ak2( = X−(X◦Ak1+X◦Ak2) )

and so on, until the matrix Tq obtained on

the qth iteration is free from entries equal

to ν.

Then one has

Yν(X ) = X ◦ Ak1 + X ◦ Ak2 + · · · + X ◦ Akq

( = ν(Ak1 + Ak2 + · · · + Akq) ),

which is clearly an element of W .
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Corollary

Assume ν 6= 0.

For any matrix X ∈ W , there exists a

subset K = {k1, k2, . . . , kq} of {1, 2, . . . , r}
for which

1

ν
Yν(X ) =

∑
ki∈K

Aki .
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Proposition 2.1

A subspace W of Mn(C) is a coherent algebra if

and only if W contains the matrices In and Jn
and is closed with respect to the operations of

matrix multiplication, SH-multiplication, and

conjugate-transposition.

Proof will be discussed in the exercise

meeting.
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Proposition 2.2

Let W1 and W2 be two coherent algebras of

order n. Then their intersection W =W1 ∩W2

is also a coherent algebra of order n.

Proof: this is an immediate corollary of

Proposition 2.1.
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Coherent subalgebras

Let W1 and W2 be coherent algebras with

W1 ⊆ W2. Then W1 is called a coherent

subalgebra of W2.

Let A ∈ Mn(C) be arbitrary. The minimal

coherent algebra which contains A is called

the coherent algebra generated by A and

will be denoted by 〈〈A〉〉.
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Coherent subalgebras

In similar fashion, one more generally defines

the coherent algebra 〈〈A1,A2, . . . ,Ak〉〉
generated by the matrices A1,A2, . . . ,Ak .

Clearly, if {A1,A2, . . . ,Ar} is the standard

basis of a coherent algebra W , then one has

〈〈A1,A2, . . . ,Ar〉〉 = 〈A1,A2, . . . ,Ar〉 =

W .
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Coherent subalgebras

The definitions given above make sense

since, by Proposition 2.2, any intersection

of coherent algebras is again a coherent

algebra.

〈〈A〉〉 may be interpreted as the intersection

of all coherent subalgebras of Mn(C) which

contain A.
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Coherent subalgebras

Let C(A) denote the set of all such

subalgebras.

C(A) 6= ∅ since it contains the coherent

algebra VC({e}, {1, 2, . . . , n}) = Mn(C).

Thus

〈〈A〉〉 =
⋂

W∈C(A)

W .
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Computation

At the moment we do not wish to discuss in

evident form, various algorithms for

constructing 〈〈A〉〉.
Nonetheless, we mention an extremely

effective algorithm which accomplishes this,

namely Weisfeiler-Leman stabilization.

The following examples demonstrate how

〈〈A〉〉 can be constructed using certain

tricks based mainly on the Schur-Wielandt

principle.
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Example 2.2
•

• • •��������

::::::::1

2 3 4

Let Γ be the above graph and let A = A(Γ)

be its adjacency matrix.

We wish to determine W = 〈〈A〉〉.

Clearly, A =

(
0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

)
M. Klin Coherent configurations September 2025 31 / 55



Example 2.2 (cont.)

All we know from the outset is that

A, I4, J4 ∈ 〈〈A〉〉.
Since 〈〈A〉〉 is a linear space, we get

Ā ∈ 〈〈A〉〉 where

Ā = J4 − I4 − A =

(
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

)
.
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Example 2.2 (cont.)

Now, since 〈〈A〉〉 is closed under matrix

multiplication, it must contain the two

additional matrices:

A2 =

(
3 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

)
and

Ā2 =

(
0 0 0 0
0 2 1 1
0 1 2 1
0 1 1 2

)
.
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Example 2.2 (cont.)

Applying the Schur-Wielandt principle, we

further obtain B1,B2 ∈ 〈〈A〉〉, where

B1 = 1
3Y3(A2) =

(
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
and

B2 = 1
2Y2(Ā2) =

(
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
.
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Example 2.2 (cont.)

Redefining B3 = A and B4 = Ā, we now

have four (0, 1)-matrices B1, B2, B3, B4 of

〈〈A〉〉 which have mutually disjoint support

and sum to J4.

However, these four matrices do not

constitute a basis for 〈〈A〉〉, since 〈〈A〉〉
must additionally contain all products of the

form BiBj for i , j ∈ {1, 2, 3, 4}.
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Example 2.2 (cont.)

In particular, B1B3 =

(
0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

)
and

B3B1 =

(
0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

)
must be elements of

〈〈A〉〉, resulting in a “desymmetrization” of

the matrix A.
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Example 2.2 (cont.)

This gives a new set of five matrices:

C1 = B1, C2 = B2, C3 = B1A, C4 = AB1,

C5 = B4, which turns out to provide the

desired basis for 〈〈A〉〉.
Indeed, all matrix products of the form CiCj

are elements of 〈C1, . . . ,C5〉, as is readily

verifiable from the following table of

products.
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Example 2.2 (cont.)

C1 C2 C3 C4 C5

C1 C1 O C3 O O

C2 O C2 O C4 C5

C3 O C3 O 3C1 2C3

C4 C4 O C2 + C5 O O

C5 O C5 O 2C4 2C2 + C5
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Example 2.2 (cont.)

To this point we have shown that

〈C1, . . . ,C5〉 is a matrix algebra in the usual

sense.

As the Ci ’s have mutually disjoint support,

〈C1, . . . ,C5〉 is closed under

SH-multiplication.

As C t
1 = C1, C t

2 = C2, C t
3 = C4, C t

4 = C3,

and C t
5 = C5, it is closed under

conjugate-transposition.
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Example 2.2 (cont.)

Finally, as J4 = C1 + C2 + C3 + C4 + C5 and

I4 = C1 + C2, we conclude that 〈C1, . . . ,C5〉
is a coherent algebra.

By construction,

A ∈ 〈C1, . . . ,C5〉 ⊆ 〈〈A〉〉.
Hence, 〈C1, . . . ,C5〉 = 〈〈A〉〉.
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Example 2.3 (Octahedron)
•

•

•
•

•

• PPPPP

66666666 ��������nnnnnPPPPP

nnnnn

�������� 66666666

1

2

3

6

4

5

Now we will proceed with another example

of a coherent algebra, using essentially that

it is also a centralizer algebra.

Namely, we start with the octahedron O.

M. Klin Coherent configurations September 2025 41 / 55



Example 2.3 (cont.)

Let g = (2, 3, 4, 5), h = (1, 2, 3)(4, 5, 6).

Check that g , h ∈ Aut(O).

Check that H = 〈g , h〉 is a transitive group

of degree 6.

|H | = 24.

We wish to construct W = V (H , [1, 6]).

M. Klin Coherent configurations September 2025 42 / 55



Example 2.3 (cont.)

Construct W1 = V (〈g〉, [1, 6]) and

W2 = V (〈h〉, [1, 6]).

Check that both algebras, by coincidence,

have rank 12.

They are presented by matrices

A1=

 1 4 4 4 4 5
6 2 7 8 9 10
6 9 2 7 8 10
6 8 9 2 7 10
6 7 8 9 2 10

11 12 12 12 12 3

A2=

 13 14 15 16 17 18
15 13 14 18 16 17
14 15 13 17 18 16
19 20 21 24 22 23
21 19 20 23 24 22
20 21 19 22 23 24


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Example 2.3 (cont.)

Now W =W1 ∩W2 is the intersection of

algebras W1 and W2.

To get description of W consider auxiliary

bipartite graph ∆, vertices of which

correspond to entries of A1 and A2 (12+12

vertices).

Two vertices x , y are adjacent if there exists

a cell occupied in A1 and A2 by x and y

respectively.
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Example 2.3 (cont.)
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∆
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Example 2.3 (cont.)

◦ ◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦
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M. Klin Coherent configurations September 2025 46 / 55



Example 2.3 (cont.)

Connectivity components of the graph ∆

define matrix for color graph

W =W1 ∩W2.

It has rank 3.

Different colors correspond to vertices

(loops), edges and non-edges of O.

A =

 1 2 2 2 2 3
2 1 2 3 2 2
2 2 1 2 3 2
2 3 2 1 2 2
2 2 3 2 1 2
3 2 2 2 2 1

.
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Schurian coherent algebras

We call a coherent algebra W Schurian if it

coincides with the centralizer algebra of a

suitable permutation group.

In the previous example, W1, W2, W are all

Schurian algebras of ranks 12, 12 and 3

respectively.

Otherwise, W is called non-Schurian.
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I. Schur

The name goes back to Schur, who was

considering (1933) Schur rings, a special

kind of coherent algebras which are

simultaneously group algebras (rings).

Schur believed that all Schur rings are

coming from a centralizer algebra of a

suitable permutation group.
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Non-Schurian

The smallest counterexamples to the

conjecture of Schur in wider context,

non-Schurian association schemes, exist on

15, 16, 18 vertices.

The desired property may be established by

group-theoretical or combinatorial

arguments.

In any case this it quite a routine activity

(computer is very helpful).
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Example 2.4 (DRT on 15 vertices)
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Example 2.4 (cont.)

Doubly regular tournament Γ, its opposite

graph Γt and the reflexive relation form

coherent configuration of rank 3.

The parameters are (15, 7, 3, 4), that is

A(Γ)2 = 4A(Γ) + 3A(Γ)t

It is non-Schurian: Aut(Γ) has order 21,

while Γ has 15·14
2 = 105 arcs.
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Example 2.4 (cont.)

Alternative (combinatorial) proof:

count the number of induced subgraphs

with 5 vertices of prescribed isomorphism

types;

Distinguish arcs of Γ, using these invariants.
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Thank You!
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