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1 Introduction

In his Ph.D. thesis [10], A. Heinze determined all partial difference sets (briefly,
pds’s) over groups of order up to 49. For this research he used computer
catalogues of strongly regular graphs with a small number of vertices, which
were created by E. Spence [17].

One of Heinze’s results was a proof of the existence of two unusual pds’s over
groups of order 36, one such group being the direct product of two copies of
the dihedral group of order 6. Both these pds’s imply the same (up to isomor-
phism) strongly regular graph I' with the parameters (v,k, \) = (36,15, 6).
Aut(T) is of order 648 and acts transitively on the vertex set of I. Moreover,
it turns out that I' is a Latin square graph coming from a proper loop of order
6.

Later on, we realized that A. Barlotti and K. Strambach were looking for
exactly such an example of a proper loop, see [2].

The main content of the current paper is a quite beautiful, computer-free
interpretation of the graph I" and its further generalization to an infinite series
of similar examples.

2 Brief preliminaries

We start with a brief account of the main definitions, including Latin square
as an n x n array together with its n?-element set of ordered triples; quasi-
groups, loops and groups as algebraic structures associated to Latin squares;
association schemes with 2, 3 and 4 classes; 3-nets, transversal designs and
strongly regular graphs linked to Latin squares.

We next recall the most important methods of classification of Latin squares
and various groups attributed to Latin squares and related combinatorial
structures.

A loop L will be called a proper loop if its main class does not contain a group.
For details and further references we mention the following important sources:
[4], [14], [2], [12].

We also discuss the notion of a partial difference set (pds), e.g., see [9], and
its specific case when it defines a Latin square graph.

Last but not least, we briefly consider an elegant interpretation of a Latin
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square as a certain induced subgraph of a Hamming graph with suitable pa-
rameters.

3 Classics and folklore

A number of results linking Latin squares to other structures play a significant
role in our presentation.

Lemma 3.1 Let L be a Latin square of order n, and let I' = LSG(L) be
the Latin square graph defined by L. If n > 5, then cliques of order n in T’
necessarily correspond to lines of the associated 3-net M(L).

Lemma 3.2 For n > 5, we can recover the 3-net N(L) uniquely from the
graph T' = LSG(L).

Proposition 3.3 Forn > 5, Aut(LSG(L)) = Aut(N(L)).

Proposition 3.4 Let H be a group, and L = L(H) a group Latin square.
Then Aut(M(L)) = (H? : Aut(H)).Ss.

Theorem 3.5 Let H be a group, L(H) its Cayley table, and T' = LSG(H)
the Latin square graph defined by L(H). Assume |H| > 5. Then Aut(I') =
(H? : Aut(H)).Ss.

Example 3.6

(a) Aut(LSG(Zy x Zs3)) = S0 Sy, where |Sy 0S| =27 - 32,
(b) |Aut(LSG(Zy))| = 192.

Example 3.7

(a) |Aut(LSG(Z))| =2 - 37,
(b) |Aut(LSG(Ss))| = 2* - 3.

Theorem 3.8 Let (1 be a group of order n, and let Qo be a loop of order n.
Then @y is isomorphic to Qy if and only if N(Q1) = N(Q2).

Corollary 3.9
(a) If Q1 and Q9 are non-isomorphic groups of order n, then M(Q1) 2 N(Q2)

(b) If a Latin square QQ does not appear in the main class of any group, then
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LSG(Q) is not isomorphic to any LSG over a group.

We will discuss briefly which of these results are classical and which are folk-
lore. Important references here include [1], [8], [3], [13], as well as many others
which, although deserving of credit, we cannot mention because of space lim-
itations.

4 Proper loops with a regular group of collineations

A. Barlotti and K. Strambach wrote on p. 79 of [2]:

“We were not able to decide whether there exists a proper finite loop having
a sharply transitive group of collineations.”

It turns out that such an example had already been provided in [10], although
in slightly different terminology. This example gives a surprisingly simple
resolution to their remark.

Proposition 4.1 [10] Consider the Latin square Qg (# 3.1.1 in [4] indicated
below:

123456
231564
312645
465213
546321
654132

Then:

(a) The main class of Qg does not contain a group;

(b) G = Aut(LSG(Qs)) is a transitive permutation group of degree 36 and
order 648;

(¢) G has a regular subgroup.

The original proof of Proposition 8 was accomplished by brute force, and relied
heavily on computations performed with the aid of GAP, GRAPE, and nauty.
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5 Computer-free interpretation

Using the computer packages GAP and COCO we were able to identify the
group G of order 648 which appears in the formulation of Proposition 8. Its
isomorphism type is (S30.53)P°%, that is the subgroup of all even permutations
in the wreath product S3 1S3, where S3 is the symmetric group of degree 3
(which is, of course, isomorphic to the dihedral group D3 of degree 3).

After that, we obtained the following computer-free interpretation of a transver-
sal design T'D(3,6) which may be associated with group G:

- Consider the auxiliary graph A = K333, that is, the complete 3-partite
graph on 9 vertices which is regular of valency 6. Our group G is a subgroup
of index 2 in Aut(A).

- A has exactly 72 spanning subgraphs, each isomorphic to the undirected
cycle Cy. Group G has two orbits of length 36 in its action on these cycles.
Select one such orbit; denote it as L.

- A has 18 specific subgraphs which we shall call partial 1-factors, each on
6 vertices and regular of valency 1. Denote by P the collection of all such
subgraphs.

- Consider the incidence structure & = (P, L), with incidence defined by
natural inclusion. That is, a partial 1-factor is incident to a cycle provided
the edge set of the former is contained in the edge set of the latter.

Proposition 5.1

(a) The incidence structure & is a transversal design T D(3,6);

(b) Aut(T'D(3,6)) = G;

(c) Up to isomorphism, G has two regular subgroups of order 36 in its action
on set L;

(d) A 3-net which is dual to the transversal design & is isomorphic to M(Qsg);

(e) Qg does not have a group in its main class.

Note that our proof of the above nowhere depends on the use of a computer;
instead it relies on only those theoretical elements briefly touched upon in
Section 3.
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Finally, analyzing the structure of & and G together with ), it becomes
evident that we can interpret QQg as a “slightly corrupted” Cayley table for
the dihedral group D3 of order 6. This observation was in fact crucial for our
further generalizations.

6 An infinite series

Our previous observation was very helpful in allowing us to develop a certain
insight, and enabling us to construct one additional example of a Latin square
graph on 196 vertices which comes from a quasigroup Q14 of order 14.

Originally, this example was also managed with the aid of the computer pack-
age COCO. However, subsequently we were able to give a computer-free inter-
pretation, and to construct, in the same spirit as T'D(3, 6) above, a transversal
design T'D(3, 14) corresponding to (4.

Finally, we realized that we were prepared to define an infinite series of exam-
ples.

Theorem 6.1 Let p = 3( mod 4) be a prime number. Then there exists an
incidence system G = G, such that:

(a) & is a transversal design T D(3,2p);

(b) G = Aut(S) = (S3 1 D,)P is a permutation group of order 24p® which
acts transitively on the point and line sets of & of cardinalities 6p and
4p?, respectively;

(c) As a transitive group of degree 4p* in its action on the lines of &, G
contains a reqular subgroup H = D, X D, of order and degree 4p*;

(d) The dual structure to & is a 3-net which is not coming from a suitable
group of order 2p.

The main part of the proof relies on an auxiliary graph A with 3p vertices
which is regular of valency 2p; it is in fact a Cayley graph of the cyclic group
Zsy, of order 3p. Points and lines of the incidence structure &, are described
in terms of certain subgraphs of A.

Finally, having a transversal design &,, we may define a quasigroup ()g, of
order 2p (in fact, a loop) which is a certain modification of the dihedral group
D,.
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7 Theoretical postscriptum

Having obtained all of these results and especially a nice description of the
loop 2, we became suspicious as to whether or not the loop itself was known
to loop theorists. Moreover, we wanted to understand who was the first to use
loop Q¢ in one or another context, possibly different from our goals.

A corresponding bibliographical search was arranged, a complete report on
which would constitute one additional huge paper. Here we briefly mention
the most important observations, as a rule without evident references.

A seminal paper was published by A. Sprague, see [18], a year before the paper
[2]. In Sprague’s paper, both partial sets corresponding to our 7'D(3, 6) are de-
scribed in evident form. However, [18] does not contain an explicit description
of the transversal design, in particular no question about its automorphism
group is posed.

Conversely, various automorphism groups implicitly or explicitly related to
Latin squares were considered in publications by many other mathematicians,
including E. Schonhardt, A. Sade, R. Artzy, B. F. Bryant & H. Schneider, A.
E. Malykh & A. N. Pekhletskaya, D. Betten, R. Bailey, Ch. Praeger.

Loops ()2, and their generalizations were considered by many experts, espe-
cially E. Wilson, R. L. Wilson, Jr., E. G. Goodaire & D. A. Robinson, K.
Kunen.

We believe that our approach sheds new light on various links between Latin
squares, loops, groups, nets, graphs, partial difference sets and transversal
designs.
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