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Binary relations

Let R,S ⊆ Ω2 = Ω× Ω be binary relations. Then

S⊤ := {(α, β) | (β, α) ∈ S};
S is symmetric if S = S⊤;

S(α) := {β | (α, β) ∈ S};
RS = {(α, β) |R(α) ∩ S⊤(β) ̸= ∅};
1Ω := {(ω, ω) |ω ∈ Ω}
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Matrices

Let A,B ∈ MΩ(F), char(F) ̸= 2 be arbitrary matrices. We denote
by

AB (or A · B) the usual matrix product; e

A ◦ B the Schur-Hadamard (component-wise) product, i.e.
(A ◦ B)αβ := AαβBαβ;

A ⋆ B := 1
2(AB + BA) the Jordan product of matrices;

A⊤ the transposed of A;

IΩ the identity matrix (the ·, ⋆-unit);
JΩ the all one matrix (the ◦-unit);
if R is a binary relation, then R denotes the adjacency matrix
of R.



Association schemes (Bose and Shimamoto, 1952).

A set A0, ...,Ar−1 ∈ MΩ(Q) of 0, 1-matrices determines a
symmetric association scheme ⇐⇒

1 IΩ = A0;

2 A⊤
i = Ai ;

3
∑

i Ai = JΩ;

4 AiAj =
∑

k p
k
i ,jAk .

It follows from the definition that

1 A := ⟨A0, ...,Ar−1⟩ is a commutative subalgebra of MΩ(Q);

2 ∀i Ai = S i for a unique symmetric relation Si ⊆ Ω2;

3 the relations S0 = 1Ω, S2, ...,Sr−1 form a partition of Ω2;

4 ∀i ,j ,k∀(α,β)∈Sk : |Si (α) ∩ Sj(β)| = pki ,j .
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Symmetric association schemes

The numbers r and |Ω| are called the rank and order of an AS
X = (Ω, {S0, ...,Sr−1}).

The matrices Ai , the corresponding relations Si and their graphs
(Ω,Si ) are called basic matrices/relations/graphs of the scheme.

The numbers pki ,j are called intersection numbers of X. They are
structure constants of the adjacency algebra A = ⟨A0, ...,Ar−1⟩
w.r.t. standard basis A0, ...,Ar−1.

Let x = (x0, ..., xr−1) be a vector of non-commutative variables.
The matrix A(x) :=

∑r−1
i=0 xiAi is called the adjacency matrix of X.

Then

A(x)2 =
∑r−1

i=0 qi (x)Ai where each qi (x) is a quadratic form.



A concrete example

Ω = {1, 2, 3, 4}, r = 3.

A0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,A1 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ,A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


A2
1 = 2A0 + 2A2,A1A2 = A2A1 = A1,A

2
2 = A0.
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A concrete example

Adjacency matrix

A(x) =


x0 x1 x2 x1
x1 x0 x1 x2
x2 x1 x0 x1
x1 x2 x1 x0

 ⇒ A(x)2 = q0(x)A0 + q1(x)A1q2(x)A2

where
q0(x) = x20 + 2x21 + x22 ;
q1(x) = x0x1 + x1x0 + x1x2 + x2x1;
q2(x) = x0x2 + x2x0 + 2x21 .



Association schemes

In 1984 Bannai and Ito published a book ”Algebraic Combinatorics
I; Association schemes” where they developed a comprehensive
theory of ASs. They changed the definition of an AS as follows

1 IΩ = A0;

2 A⊤
i ∈ {A0, ...,Ar−1};

3
∑

i Ai = JΩ;

4 AjAi = AiAj =
∑

k p
k
i ,jAk ;

Later P.-H. Zieschang proposed to remove commutativity, i.e.
AiAj ̸= AjAi for some i , j . In what follows an AS is not assumed to
be commutative.

Notice that each finite group gives rise to a (may be
non-commutative) association scheme.



Examples

1 A trivial scheme (Ω, {1Ω,Ω2 \ 1Ω});
2 Association schemes coming from permutation groups

(Schurian association schemes);

3 Flag association schemes in finite geometries;

4 Distance regular graphs;

5 Finite groups

Strongly regular graphs

A regular graph Γ = (Ω, S) is called strongly regular iff the number
|S(α) ∩ S(β)| depends only on whether α, β are adjacent in Γ.

Proposition

A graph is strongly regular iff it is a basic graph of a symmetric AS
of rank three.



Applications of ASs

1 Statistics of experimental designs;

2 Combinatorial design theory;

3 Finite geometry;

4 Permutation groups;

5 Coding theory;

6 Graph isomorphism problem



Symmetric Jordan schemes

Bose and Mesner proposed matrix definition of AS in 1959. In the
same year Shah generalized the concept of AS and introduced an
object later called a (symmetric) Jordan scheme (Cameron).
A set A0, ...,Ar−1 ∈ MΩ(Q) of 0, 1-matrices determines a
symmetric Jordan scheme ⇐⇒

1 IΩ = A0;

2 A⊤
i = Ai ;

3
∑

i Ai = JΩ;

4 Ai ⋆ Aj =
∑

k p
k
i ,jAk ;

It follows from the definition that

1 A := ⟨A0, ...,Ar−1⟩ is a ⋆ subalgebra of MΩ(Q);

2 ∀i Ai = S i for a unique symmetric relation Si ⊆ Ω2;

3 the relations S0 = 1Ω, S2, ...,Sr−1 form a partition of Ω2;

4 ∀i ,j ,k∀(α,β)∈Sk : |Si (α) ∩ Sj(β)|+ |Sj(α) ∩ Si (β)| = 2pki ,j
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Non-symmetric Jordan schemes

A set A0, ...,Ar−1 ∈ MΩ(Q) of 0, 1-matrices determines a
non-symmetric Jordan scheme ⇐⇒

1 IΩ = A0;

2 A⊤
i ∈ {A0, ...,Ar−1};

3
∑

i Ai = JΩ;

4 Ai ⋆ Aj =
∑

k p
k
i ,jAk ;

It follows from the definition that

1 A := ⟨A0, ...,Ar−1⟩ is a ⋆ subalgebra of MΩ(Q);

2 ∀i Ai = S i for a unique relation Si ⊆ Ω2;

3 the relations S0 = 1Ω, S2, ...,Sr−1 form a partition of Ω2;

4 ∀i ,j ,k∀(α,β)∈Sk : |Si (α) ∩ S⊤
j (β)|+ |Sj(α) ∩ S⊤

i (β)| = 2pki ,j



Association schemes and Jordan schemes

Proposition

An association scheme is always a Jordan scheme.

The converse is not true. Take the following partition of {1, 2}:
S0 = I{1,2},S1 = {(1, 2)},S2 = S⊤

1 . Its standard basis

A0 = I2,A1 = E12,A2 = E21.

The products are

A2
0 = A0,A

2
1 = A2

2 = O,A0 ⋆ Ai = Ai ,A1 ⋆ A2 =
1

2
A0

Thus ({1, 2}, {S0,S1, S2}) is a non-symmetric (and non-regular)
Jordan scheme.

Theorem (MK, MM, SR)

A symmetric Jordan scheme is always regular.
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Shah’s example

1 Ω = Sym(3);

2 (π, σ) ∈ S0 ⇐⇒ π = σ;

3 π ̸= σ ∧ (π, σ) ∈ Si ⇐⇒ π(i) = σ(i), i = 1, 2, 3;

4 (π, σ) ∈ S4 ⇐⇒ ∀i : π(i) ̸= σ(i);

Denote Ai := S i ,A := A1 + A2 + A3. Then

2Ai ⋆ Aj =


Aj i = 0
A4 i , j ∈ {1, 2, 3}

A− Ai i ∈ {1, 2, 3}, j = 4
2A0 + A4 i = j



Basic graphs of Shah’s example

123

��

213

��
132

��

231

��
312

��

321

��

123

213 132

231 312

321

123

213 132

231 312

321

S0 S3 S2
123

213 132

231 312

321

123

213 132

231 312

321

S1 S4



An association scheme behind the Shah’s example

Let Ω = Sym(3).
For each σ ∈ Sym(3) define Rσ = {(π1, π2) |π−1

1 π2 = σ}.

Proposition

The pair (Ω, {Rσ}σ∈Sym(3)) is a non-commutative association
scheme. More precisely,

1 R⊤
ρ = Rρ−1 ;

2 Rρ · Rσ = Rρσ;

3 S0 = R1,S1 = R(23),S2 = R(13), S3 = R(12),S4 =
R(123) + R(321)

Definition

Given a set R of binary relations, its symmetrization R̃ is defined
as {R⊤ ∪ R |R ∈ R}.



Symmetrization of an AS

Proposition (R. Bailey)

If (Ω,R) is an AS then its symmetrization (Ω, R̃) is a symmetric
Jordan scheme.

A symmetric Jordan scheme is called proper if it is not a
symmetrization of an AS.

Question (P. Cameron, 2001)

Are there proper symmetric JS?



Jordan algebras

The product ⋆ is commutative, but not associative. It satisfies the
following identity:

(A ⋆ B) ⋆ (A ⋆ A) = A ⋆ (B ⋆ (A ⋆ A)).

Commutative algebras satisfying the above identity are known as Jordan
algebras.
Given an arbitrary associative algebra (A, ·) defined over F, char(F) ̸=2,
one can define a Jordan product on A via A ⋆ B = 1

2 (AB + BA). Then
(A, ⋆) is a Jordan algebra.

Proposition

A subalgebra of (A, ⋆) generated by one element A ∈ A coincides with
the ·-subalgebra generated by the same element.

Corollary

Any basic graph of a symmetric Jordan scheme is walk regular =⇒ it is
regular.



Symmetric JSs of small rank

Proposition

Let X = (Ω,R = {R0, ...,Rr−1}) be a JS. If r ≤ 4, then X is an AS.

Proof. Consider A := R⟨A0,A1, ...,Ar−1⟩. If dim(A) = r ≤ 2, then R is
trivial.
If degree of the minimal polynomial of some basic graph (Ω,Ri ),Ri ∈ R
equals to dim(A), then the adjacency matrix R i ·-generates A. In this
case all matrices in A pairwise ·-commute ⇒ R is an AS.
Otherwise, any basic graph of R has at most 3 eigenvalues. Hence R is a
partition of KΩ into a disjoint union of two or three SRGs ⇒ R is an AS.
■

Theorem (MM & van Dam)

Any partition of a complete graph into a disjoint union of three SRGs
form an AS.
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Sufficient condition to be a Jordan scheme

Proposition

A subspace A of (symmetric) matrices is ⋆-closed iff it is square
closed, i.e. ∀A ∈ A : A2 ∈ A.

3+1 Lemma

Let S = {1Ω,C ,S1, S2,S3} be a symmetric regular partition of Ω2.
Assume that for any i ∈ {1, 2, 3} that the partition
Si := {1Ω,C ,Si , S \ Si} is an association scheme. Then S is a
Jordan scheme.

Remark. In this situation (Ω,C ) is a strongly regular graph (may
be disconnected).



A concrete example of a proper Jordan scheme

The main idea: take an improper Jordan scheme and switch some
of its colors.
Let F4 = {0, 1, α, α2} be a Galois field (1 + α+ α2 = 0). Consider
the natural action of SL2(F4) ∼= A5 on the set Ω := (F2

4)
∗ (the

elements of F2
4 are column vectors).

The action (SL2(F4),Ω) is faithful and transitive.

Proposition

Two pairs (x , y) and (u, v) belong to the same 2-orbit of SL2(F4)
iff one of the following holds

1 det(x , y) = det(u, v) ̸= 0;

2 det(x , y) = det(u, v) = 0 and there exists αi s.t.
y = αix , v = αiu.

The 2-orbits of this action form an association scheme of rank six
S = {1Ω = C0,C1,C2,S0,S1, S2} where
(u, v) ∈ Ci ⇐⇒ v = αiu; (u, v) ∈ Si ⇐⇒ det(u, v) = αi .



Standard basis of the scheme

Denote

σ0 =

 1 0 0
0 1 0
0 0 1

 , σ1 =

 0 1 0
0 0 1
1 0 0

 , σ2 =

 0 0 1
1 0 0
0 1 0


ρ0 =

 0 0 1
0 1 0
1 0 0

 , ρ1 =

 0 1 0
1 0 0
0 0 1

 , ρ2 =

 1 0 0
0 0 1
0 1 0


Then the matrices below form a standard basis of the adjacency
algebra of the scheme.

C i =


σi 0 0 0 0
0 σi 0 0 0
0 0 σi 0 0
0 0 0 σi 0
0 0 0 0 σi

 ,S i =


0 ρi ρi+1 ρi+1 ρi
ρi 0 ρi ρi+1 ρi+1

ρi+1 ρi 0 ρi ρi+1

ρi+1 ρi+1 ρi 0 ρi
ρi ρi+1 ρi+1 ρi 0

 ,



The properties of the scheme

1 The multiplication table has the following form:

C i · C j = C i+j , C i · S j = S i+j , S i · C j = S i−j ,

S i · S j = 4C i−j + S0 + S1 + S2

2 The scheme is non-commutative.

3 Each basic graph (Ω,Si ) is isomorphic to the line graph of the
Petersen graph.

4 Each basic graph (Ω,Si ) is distance regular of diameter 3.

5 Each basic graph (Ω,Si ) generates an association scheme of
rank 4: C0,C1 ∪ C2,Si ,S \ Si where S = S0 ∪ S1 ∪ S2.
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Symmetrization and its switching

The symmetrization of the scheme has rank 5:
C0,C := C1 ∪ C2,S0, S1, S2. It is an improper Jordan scheme. The
new JS will be obtained from it by switching.



Symmetrization and its switching

The switched coloring has the following form:
C0,C := C1 ∪ C2,S0, S

′
1, S

′
2.



Symmetrization and its switching (in a matrix form)

S1 =


0 ρ1 ρ2 ρ2 ρ1
ρ1 0 ρ1 ρ2 ρ2
ρ2 ρ1 0 ρ1 ρ2
ρ2 ρ2 ρ1 0 ρ1
ρ1 ρ2 ρ2 ρ1 0

, S2 =


0 ρ2 ρ0 ρ0 ρ2
ρ2 0 ρ2 ρ0 ρ0
ρ0 ρ2 0 ρ2 ρ0
ρ0 ρ0 ρ2 0 ρ2
ρ2 ρ0 ρ0 ρ2 0



S ′
1 =


0 ρ2 ρ0 ρ0 ρ2
ρ2 0 ρ1 ρ2 ρ2
ρ0 ρ1 0 ρ1 ρ2
ρ0 ρ2 ρ1 0 ρ1
ρ2 ρ2 ρ2 ρ1 0

 ,S ′
2 =


0 ρ1 ρ2 ρ2 ρ1
ρ1 0 ρ2 ρ0 ρ0
ρ2 ρ2 0 ρ2 ρ0
ρ2 ρ0 ρ2 0 ρ2
ρ1 ρ0 ρ0 ρ2 0





Proper Jordan scheme

Theorem

The partition {1Ω,C ,S0, S
′
1,S

′
2} is a proper JS on Ω .

Proposition

The graphs (Ω, Si ) and (Ω,S ′
i ) are isomorphic.

Proof. First, note that σiρj = ρi+j , ρiσj = ρi−j . Let P be a block
diagonal matrix defined as follows P := diag(σ1, σ0, σ0, σ0, σ0). P
is a permutation matrix of order 3. Direct check shows that
PS1P

−1 = S ′
1,P

−1S2P = S ′
2. □

Corollary

The above partition satisfies the assumptions of 3 + 1 Lemma
=⇒ it forms a Jordan scheme.



Coherent and Jordan closures

Definition

A coherent/Jordan closure of a set A ⊆ MΩ(Q), notation
WL(A)/J(A), is the smallest subspace of MΩ(Q) containing IΩ, JΩ
an is closed with respect ⊤, ◦, ·/⊤, ◦, ⋆.

Proposition

Let S = {S0 = 1Ω, ...,Sr−1} be a regular partition of Ω2 and
A := ⟨S i ⟩r−1

i=0 ⊆ MΩ(Q). Then

1 J(A) ⊆ WL(A);

2 If A is symmetric, then J(A) is symmetric. In particular,

J(A) ⊆ W̃L(A);

3 If S is a JS, then it is proper iff A ≠ W̃L(A)



Finishing the proof

The element

(S ′
1 ·S ′

2)◦C =


4σ1 0 0 0 0
0 σ1 + 3σ2 0 0 0
0 0 σ1 + 3σ2 0 0
0 0 0 σ1 + 3σ2 0
0 0 0 0 σ1 + 3σ2


belongs to WL(A) but doesn’t belong to A.



Proper Jordan schemes of unbounded rank

Let X := (Ω, {C0, ...,Cm−1,S0, ...,Sm−1}) be an association
scheme with the following multiplication table:

C i · C j = C i+j ,

C i · S j = S i+j ,

S i · C j = S i−j ,

S i · S j = nC i−j +
n−1
m (S0 + ...+ Sm−1)

where m, n are positive integers satisfying m | (n − 1).
Association schemes of this type were constructed by Kharaghani
and Suda using generalized weighing matrices (2018), and by
Reichard using permutation groups (2016).



Proper Jordan schemes of unbounded rank

1 Every Ci is a permutation; {Ci}m−1
i=0 is a group isomorphic to

Zm.

2 The union C :=
⋃

i Ci forms an equivalence relation with
n + 1 classes of size m.

3 Every basic graph (Ω,Si ) is a diameter 3 antipodal DRG
which is a cover of Kn+1.

4 If n = 1, then the scheme is thin; it corresponds to a dihedral
group of order 2m.

Theorem

The symmetrization X̃ allows a switching which is proper Jordan
scheme.



Jordan schemes based on Wallis - Fon-Der-Flaass
construction

The vector space V = Zd
3 has r := 3d−1

2 hyperplanes.
Point set Ω := V × {0, 1, ..., r}, Ωi := V × {i}, vi := (v , i).
Define C = {(ui , vi ) | u ̸= v , i = 0, ..., r}. The graph (Ω,C ) is a
disjoint union of r + 1 complete graphs K3d .
Using WFDF construction we build three pairwise edge disjoint
SRGs (Ω,S0), (Ω, S1), (Ω,S2) with parameters(

3d
3d + 1

2
, 3d−1 3

d − 1

2
, 3d−1 3

d−1 − 1

2
, 3d−1 3

d−1 − 1

2

)
such that

1 {1Ω,C , S1,S2, S3} is a symmetric regular partition;

2 The partition Ω0, ...,Ωr is a Hoffman coloring for each of the
SRGs (Ω,Si ).



Jordan schemes based on Wallis - Fon-Der-Flaass
construction

Proposition

The above partition satisfies the assumptions of 3+1 Lemma.

Proof. By Haemers-Tonchev Theorem the rainbow
((Ω, {1Ω,C , Si , (S1 ∪ S2 ∪ S3) \ Si}) is an AS. ■

Theorem

Let X = (Ω, {1Ω,C ,S1,S2, S3}) be an arbitrary rank five

symmetric Jordan scheme of order 3d 3d+1
2 and valencies

1, 3d − 1, 3d−1 3d−1
2 , 3d−1 3d−1

2 , 3d−1 3d−1
2 where d is an even

integer. Assume that the basic graph (Ω,S) is a disjoint union of
complete graphs. Then the scheme is proper.
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