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Loops

We wish to consider loops which in a sense are very close to
groups, however are not equivalent to groups. On this way we
consider 3-nets and and Latin square strongly regular graphs.



We will reach full description of such loops of order 2p, where p
is a prime. (For loops of order p, p a prime, there is just one
class of nice objects: cyclic group of order p.)
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Latin squares

A Latin square L of order n is an n × n array with n different
entries, such that each entry occurs exactly once in each row
and each column of the array. As a rule, we use 1, . . . ,n as
symbols.
L is in standard form if in the first row and column its elements
1, . . . ,n occur in natural order.



Quasigroups and loops

A quasigroup is a set Q with a binary operation ∗ such that, for
all a,b ∈ Q, the equations a ∗ x = b and y ∗ a = b have a
unique solution in Q.
We will not distinguish between Latin squares and quasigroups.
A loop N is a quasigroup with an identity element e such that
e ∗ x = x ∗ e = x for all x ∈ N.
Naturally, each loop defines a standard form Latin square.



A 3-net of order n

A 3-net of order n is an incidence structure S = (P,L) which
consists of an n2-element set P of points and a 3n-element set
L of lines. The set L is partitioned into three disjoint families
L1,L2,L3 of (parallel) lines, for which the following conditions
hold:

(i) every point is incident with exactly one line of each family
Li (i = 1,2,3);

(ii) two lines of different families have exactly one point in
common;

(iii) two lines of the same family do not have a common point;
(iv) there exist three lines belonging to three different families

which are not incident with the same point.



Directions (parallel classes)

The families L1,L2,L3 are called the directions or parallel
classes of S.
Each Latin square L of order n naturally produces a 3-net.
Points of this net are formed by the cells of L, while its
directions correspond to horizontal lines, vertical lines and the
cells occupied in L by the same element.
If L corresponds to a quasigroup Q, then the resulting 3-net is
denoted by N (Q).



Groups Σ(Q) and T (Q)

The collineation group Σ = Σ(Q) of a quasigroup Q is the
(full) collineation group of the 3-net N (Q). By collineation we
mean a permutation of points of N (Q), which maps a line to a
line.
The group Σ has a normal subgroup T = T (Q)
of index ≤ 6, which maps every class of (parallel) lines onto
itself.
This group T may be called the group of direction preserving
collineations of N (Q).



Latin square graph

Let L be a Latin square of order n and let Ω denote the
n2-element set of its cells.
Let us say that two cells are adjacent if they are in the same
row, or in the same column, or are occupied by the same
symbol.



Latin square graph

The resulted graph SRG(L) = Γ = (Ω,E), is a
(v , k , λ, µ)-strongly regular graph which is called a Latin
square graph.
Its parameters are v = n2, k = 3(n − 1), λ = n and µ = 6.
Each strongly regular graph with such parameters is called a
pseudo-Latin square graph,
while one coming from a Latin square is a geometric graph.
For a small number of vertices there is a complete list of
strongly regular graphs (Spence) and hence we know all small
pseudo-Latin square graphs.
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Main class of a Latin square

Note that any Latin square can be regarded as a subset of
{1, . . . ,n}3.
That is, L = {(x , y , z)|1 ≤ x , y , z ≤ n} such that z is the symbol
in row x and column y .
Consider exponentiation Sn ↑ S3 of symmetric groups of degree
n and 3. This is a group of order 6 · (n!)3 acting on n3 elements.
The orbit of L under the action of Sn ↑ S3 on its triples is the
main class of L.
A loop Q is a proper loop if its main class does not contain a
group.



Main corollaries about the group case

Each Latin square L is the multiplication table of some
quasigroup Q.
If Q is a group, then L is a group Latin square.
We wish to know some properties of strongly regular graphs
(briefly SRGs), which are coming from a group Latin square.



Theorem

The following theorem is a folklore one, cf. Heinze-Klin (2009):
Let H be a group, Γ = SRG(H) be a Latin square graph with
|H| ≥ 5. Then

Aut(SRG(Γ )) ∼= (H2 : Aut(H)).S3

that is, the extension of H2 :Aut(H) by S3.

Corollary
If H is a group, then Aut(SRG(H)) contains a regular subgroup
(of order n2, n = |H|.)



Theorem

Moorhouse (1991) proved:
1 If H1 and H2 are nonisomorphic groups of order n, then

SRG(H1) 6∼= SRG(H2).
2 If a Latin square L does not appear in a main class of any

group, then SRG(L) is not isomorphic to any Latin square
graph over a group.



Remark of Barlotti and Strambach

In 1983 Barlotti and Strambach posed the following remark:
"We where not able to decide whether there exists a proper
finite loop having a sharply point transitive group of
collineations".
In other words, does there exist a proper loop Q such that Σ(Q)
contains a regular subgroup.



Loop Q6 and its prosperities

Consider the following Latin square Q6 (J. Dènes, A. D.
Keedwell 1974): 

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 2 1 3
5 4 6 3 2 1
6 5 4 1 3 2





Proposition

A. Heinze and M. Klin (2009) proved the following proposition:
I The main class of Q6 does not contain a group;
I G = Aut(SRG(Q6)) is a transitive permutation group of

degree 36 and order 648;
I G has a regular subgroup



Brief story of Q6

The loop Q6 was known for a long while.
Sprague showed that the net corresponding to Q6 contains a
vertex transitive group of order 36, isomorphic to S3 × S3.
He also described a corresponding SRG as a Cayley graph.
However, the complete group Aut(SRG(Q6)) was not
investigated.



An infinite series Q2p

A. Heinze and M. Klin (2009) introduced an infinite series of
proper loops Q2p, p a prime, p ∼= 3 ( mod 4), for which the
group G = Aut(SRG(Q2p)) contains a regular subgroup of
order 4p2.



Characterizations of these loops

We wish to describe all those loops of order 2p which satisfy
the desired properties.
We will give a suitable sufficient condition to find desired proper
loops of order 2p for a prime p ≥ 3.
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Formulation of the criterion

Theorem
Sprague (1982) proved: Let K be a group of order n2. Then the
following conditions are equivalent:

1 There exists a Latin square graph Γ over a suitable
quasigroup Q of order n such that K is a regular subgroup
of T (Q);

2 The group K contains three subgroups X1,X2,X3 of order
n, any two of which have an intersection of size 1.



A relation to Cayley graphs

In this case we have X = X1 ∪ X2 ∪ X3 \ {e}, where e is the
identity element of K.
X is the connection set of a Cayley graph over K which is
isomorphic to SRG Γ .
Such a connection set is called a partial difference set over K .



The criterion in the group case

If the quasigroup Q in Sprague criterion is indeed a group, then
this criterion is automatically fulfilled. (A. Heinze and M. Klin
2009)



Strategy of search

Using Sprague criterion, we can find in principle all loops Q,
such that T (Q) contains a regular subgroup.
First we classify all groups of order n2, (up to isomorphism).
Then inspect each group to decide whether or not it contains 3
subgroups as mentioned in Sprague criterion.



n = 2p

It is impossible to describe all groups of order n2 for arbitrary n.
However, if n = 2p, p a prime, then this task became practical.
So the first step of this work was the classification of the groups
of order (2p)2 in a suitable manner for the continuation of the
work.
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General picture

One can try to find in literature description of all groups of order
4p2.
However, we preferred to do this by our own, in style and form
suitable for our goals.



Let K be a group of order 4p2 where p is a prime greater than 3.
According to Sylow Theorems, K contains a normal Sylow
p-subgroup, say N.
So, K is isomorphic to N oσ Q where N C H is a subgroup of
order p2 and |Q| = 4.
In other words, all groups of order 4p2 can be classified
according to the action σ of Q on N.



Two cases

Now, there are two options for both N and Q:
N ∼= Z2

p or N ∼= Zp2 , Q ∼= Z2
2 or Q ∼= Z4.

So we have to check all actions of each 4-order group on each
p2-order group.
We consider two cases: p ≡ 3 (mod 4) and p ≡ 1 (mod 4)



p ≡ 3 ( mod 4) (a)

We start with N ∼= Z2
p.

Recall that Aut(N) ∼= GL(2,p).
Up to conjugacy relation, GL(2,p) contains two groups of order
2, say

k1 =

〈(
−1 0
0 −1

)〉
, k2 =

〈(
−1 0
0 1

)〉
and hence one conjugacy class of subgroups which isomorphic
to Z2

2, namely, k4 = 〈k1, k2〉.
There is also one class of cyclic groups of order 4, say

k3 =

〈(
0 −1
1 0

)〉
.

Now let N ∼= Zp2 .
Here Aut(N) ∼= Zϕ(p) = Zp(p−1).
In this case Aut(N) contains only one subgroup of order 2, say
k5 and no subgroup of order 4.



p ≡ 3 ( mod 4) (b)

We can conclude that up to isomorphism there are 12 groups of
order 4p2 for p ≡ 3 (mod 4):

I Z2
p × Z4;

I Z2
p oσi Z4, σi : Z4 → ki for i = 1,2,3;

I Z2
p × Z2

2;
I Z2

p oσi Z2
2, σi : Z2

2 → ki for i = 1,2,4;
I Zp2 × Z4;
I Zp2 oσ Z4, σ : Z4 → k5;
I Zp2 × Z2

2;
I Zp2 oσ Z2

2, σ : Z2
2 → k5;



p ≡ 1 ( mod 4) (a)

This case is very similar to the former case with the exception
of four conjugacy classes of cyclic subgroups of order 4 in
GL(2,p), and one subgroup of order 4 in Zp(p−1).
Let i denote the fourth root of unity in Zp, and let

c1 =

〈(
1 0
0 i

)〉
, c2 =

〈(
−1 0
0 i

)〉
,

c3 =

〈(
−i 0
0 i

)〉
, c4 =

〈(
i 0
0 i

)〉
;

represent the four conjugacy classes.
Also, let k6 be a subgroup of order 4 in Zp(p−1).



p ≡ 1 ( mod 4) (b)

Considering above results we can summarize that up to
isomorphism there are 16 groups of order 4p2 for
p ≡ 1 (mod 4).

I Z2
p × Z4;

I Z2
p oσi Z4, σi : Z4 → ki for i = 1,2;

I Z2
p oσi Z4, σi : Z4 → ci for i = 1,2,3,4;

I Z2
p × Z2

2;
I Z2

p oσi Z2
2, σi : Z2

2 → ki for i = 1,2,4;
I Zp2 × Z4;
I Zp2 oσi Z4, σi : Z4 → ki for i = 5,6;
I Zp2 × Z2

2;
I Zp2 oσ Z2

2, σ : Z2
2 → k5;
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Basic definitions and notations

I A group which contains three subgroups X1,X2,X3, such
that |Xi | = 2p and |Xi ∩ Xj | = 1 for i , j = 1,2,3, i 6= j is
called a good group

I The three subgroups X1,X2,X3 in the above definition will
be called a good triple



Elimination of non-good groups

Analyzing structure of all groups of order 4p2, we eliminate all
but four groups.
Finally, we show that only groups of the form Z2

p oσ Z2
2 may , in

principle, be good.



List of good groups

To prove that indeed all the four groups of the form Z2
p oσ Z2

2
are good, we need to provide an example of a good triple for
each group Hi = Z2

p oσi Z2
2 for i = 1,2,3,4 as follows:

I

σ1(t1) = σ1(t2) =

(
1 0
0 −1

)
;

I

σ2(t1) = σ2(t2) =

(
−1 0
0 −1

)
;

I

σ3(t1) =

(
−1 0
0 1

)
, σ3(t2) =

(
1 0
0 −1

)
;

I

σ4(t1) = σ4(t2) =

(
1 0
0 1

)
.



Examples of good triples

Here we present an example of a good triple Ti for each good
group Hi , i = 1,2,3,4.

I

T1 = (〈[(1,0), t1]〉 , 〈[(1,1), t3]〉 , 〈[(0,1), t2], [(0,1), t0]〉) ;

I

T2 = (〈[(1,0), t0], [(1,0), t1]〉 , 〈[(0,1), t0], [(0,1), t1]〉 , 〈[(1,1), t3]〉) ;

I

T3 = (〈[(1,0), t2]〉 , 〈[(0,1), t1]〉 , 〈[(1,1), t0], [(0,0), t3]〉) ;

I

T4 = (〈[(1,0), t2]〉 , 〈[(0,1), t1]〉 , 〈[(1,1), t3]〉) .
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Classification of good triples in H1 (a)

H1 contains 3p + 3 subgroups of order 2p as follows:
1 There are 2p cyclic subgroups of the form
〈[(1,b), ti ]〉 , i = 1,2, b ∈ Zp.

2 There are p + 1 cyclic subgroups of the form
〈[(1,b), t3]〉 , b ∈ Zp or 〈[(0,1), t3]〉.

3 This group contains only two dihedral subgroups of order
2p: 〈[(0,1), ti ], [(0,1), t0]〉 for i = 1,2.



Classification of good triples in H1 (b)

A good triple must contain exactly one subgroup of each type
as above.
So at all there are 2p(p − 1) good triples, all in one orbit under
the induced action of Aut(H1).



Classification of good triples in H2

We can conclude that there are p3(p + 1)(p − 1) good triples,
all in one orbit under the induced action of Aut(H2).



Classification of good triples in H3 (a)

H3
∼= Dp × Dp, where Dp is dihedral group of order 2p.

This observation simplifies our analysis.



Classification of good triples in H3 (b)

In this case, we have p4 − p3 + p2 − p good triples which
partition into three orbits under the induced action of
Aut(Dp × Dp). In the following list we present a representative
from each orbit, (using a suitable notation):

1 (< a,b >,< x , y >,< ax ,abxy >). This orbit contains
p2 − p triples, and each triple contains three copies of Dp.

2 (< ay >,< xb >,< ax ,ax ,by >). This orbit contains
p3 − p2 triples, and each triple contains two copies of C2p
and one copy of Dp.

3 (< ay >,< xb >,< ax ,ax ,bxy >). This orbit contains
p2(p − 1)2 triples, and each triple contains two copies of
C2p and one copy of Dp.



Classification of good triples in H4

In H4 we have 6 ·
(p+1

3

)
good triples.

All these triples are laying in one orbit under the induced action
of Aut(H4).
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What does mean geometric graph in this case

According to Sprague criterion any good triple (K1,K2,K3) in a
group H, is yielding a Cayley graph Cay(H,X ) which is
isomorphic to a Latin square graph SRG(Q) over a suitable
quasigroup Q. As explained before, X = (K1 ∪ K2 ∪ K3) \ {e}.



We have 6 graphs over 4 groups (a)

Let us take two good triples in an arbitrary group H say,
T1 = (K1,K2,K3), T2 = (L1,L2,L3), and let X1,X2 denote the
connection sets associated with T1 and T2 respectively.
Clearly, if T1 and T2 are laying in the same orbit of Aut(H), then
Cay(H,X2) ∼= Cay(H,X2).
Since our four good groups are yielding six orbits of good
triples we have at most six different geometric graphs up to
isomorphism.



We have 6 graphs over 4 groups (b)

Over H1,H2 and H4 there is only one graph, say Γ1, Γ2 and Γ4
respectively.
Put
T1 = {〈a,b〉 , 〈x , y〉 , 〈ax ,by〉}, T2 = {〈a, y〉 , 〈x ,b〉 , 〈ax ,by〉}
and
T3 = {〈a, y〉 , 〈x ,b〉 , 〈ax ,bxy〉}.
Let Xi denote the connection set associated with Ti , and let Γ3,i
denote the corresponding Cayley graph.



Up to isomorphism there are just 3 graphs

We establish isomorphisms between the constructed Cayley
graphs, proving that:

I Γ3,1 to Γ3,2;
I Γ1 to Γ3,1;
I Γ2 to Γ4.



CI-Groups

According to the isomorphism Γ3,1
∼= Γ3,2 we showed:

Remark
Dp × Dp is not a CI-Group
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Formulation of main theorem (a)

According to previous section, there are no more than three
geometric graphs over a suitable loops of order 2p, p a prime.



Formulation of main theorem (b)

The graphs Γ2, Γ3,2, Γ3,3 contains a different number of copies
of K4, and hence they are non-isomorphic.

Theorem
There are exactly three geometric graphs over a suitable loops
of order 2p, p a prime.



Formulation of main theorem (c)

Theorem

1 Γ2 = SRG
(
Z2p
)

2 Γ3,2 = SRG (Dp)

3 Γ3,3 = SRG
(
Q2p

)
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2. J. Dènes, A. D. Keedwell, Latin squares and their

application,Academic press, New York, 1974.
3. A. Heinze and M. Klin, Loops, Latin Squars and Strongly

Regular Graphs: An algorithmic approach via Algebraic
Combinatorics, in: M. Klin et al, Algorithmic Algebraic
Combinatorics and Grabner Bases (Springer-Verlag Berlin
Heidelberg, 2009) 3–65.

4. K. Kunen, The structure of conjugacy closed loops. Trans.
Amer. Math. Soc. 352 (2000), no. 6, 2889–2911.

5. G. E. Moorhouse, Bruck nets, codes, and characters of
loops. Des. Codes Cryptogr. 1 (1991), no. 1, 7–29.

6. E. Spence, Strongly regular graphs on at most 64 vertices.
http://www.maths.gla.ac.uk/ es/srgraphs.html.

7. A. P. Sprague, Translation nets, Mitt. Math. Sem. Giessen
No. 157 (1982), 46–68.



That’s all folks!

THANKS
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