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Abstract

Main MSC 20B25 = Finite automorphism groups of algebraic, geometric,
or combinatorial structures (including graph automorphisms).

Additional MCS 05C25 = Graphs and abstract algebra (groups acting
on graphs, etc.

The talk addresses a problem in graph representation theory of finite
groups - finding vertex-minimal graphs with a given automorphism
group. We exhibit two undirected 16-vertex graphs having automor-
phism groups A4 and A5. It improves Babai’s bound for A4 and the
graphical regular representation bound for A5. The graphs are con-
structed using projectivisation of the vertex-face graph of the icosahe-
dron.
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Introduction — Group representations

Representation theories of groups can be divided into two overlapping
parts.

There are group representations which can be called nonsurjective such
as permutation representations (G → ΣX) and linear representations
(G → GL(n, k)) which deal with homomorphisms G → Aut(X) which
are usually not surjective.

Typical problems in this area are classifications — finding all isomor-
phism classes of homomorphisms (representations/modules) and prop-
erties of representations (modules).

A homomorphism G → Aut(X) extends to a algebra homomorphism
k[G]→ k[Aut(X)]. Thus group representation theory extends to algebra
representation theory.
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Automorphism group theory as part of group
representation theory

There are also group representation theories which can be called bijective
representation theories (such as Euclidean space isometry and graph
automorphism theories) which deal with bijective homomorphisms
G→ Aut(X) and study full automorphism groups of certain objects.

Examples of problems in this latter area are problems about extremal
parameter values for objects having given automorphism groups.
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Automorphism group theory as part of group
representation theory

f : V → V - graph automorphism provided

v ∼ w ⇐⇒ f(v) ∼ f(w).

The mapping (functor) Aut: Grph→ Grp, Γ 7→ Aut(Γ).

The automorphism group of a graph Γ — Aut(Γ), consists of all ver-
tex permutations that preserve adjacency and non-adjacency. This is a
subgroup of the symmetric group on the vertex set ΣV (Γ).

(For quick check: draw the graph, then permute vertices dragging edges
along, check if pictures are the same).
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History of theory of graph automorphism groups

Robert Frucht (1939)

Key contribution: Proved the classical Frucht’s theorem, establishing
that for every finite group G there is a finite undirected graph Γ such
that

Aut(Γ) ' G

— functor Aut is surjective.

This result established an important link between abstract group theory
and graph theory by showing that undirected graph symmetries (using
one irreflexive symetric binary relation) can bijectively model any group
structure. (In contrast with permutation representations). May help to
visualize some group concepts (e.g. direct and semidirect products).
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History of theory of graph automorphism groups

Gert Sabidussi (1958)

First nontrivial vertex-minimal graphs: found minimal vertex number
for some abelian groups:

Denote by µ(G) the minimal number of vertices of undirected graphs
having automorphism group isomorphic to the group G:

µ(G) = min
Γ:Aut(Γ)'G

|V (Γ)|.

Trivial cases

µ(Σn) = n. D2n = n.
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History of theory of graph automorphism groups

Sabidussi, 1958:

m = 3, 4, 5 =⇒ µ(Zm) = 3m (not really true for m = 4,
µ(Z4) = 10);

µ(Zp
ak
k

) = 2pakk , if pakk ≥ 7 (not really true for p = 2, µ(Z2a) = 2a+6

, Harary (exercise) quoting Merriwether, Daugulis, [2]);

µ(Zp
a1
1
× ... × Zp

ak
k

) ≤
k∑

i=1
µ(Zp

ai
i

), if a group is a direct product of

subgroups having coprime orders, then the disjoint union of vertex
minimal graphs for each factor is a graph for this direct product;
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History of theory of graph automorphism groups

Classic example - a graph Γ such that Aut(Γ) ' Z3.
Aut(Γ) is generated by permutation (123)(456)(789).
Orbits: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}.

9 4

1

6 7

3 2

8 5
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History of theory of graph automorphism groups

We show a vertex minimal graph Γ such that Aut(Γ) ' Z4. Aut(Γ) is
generated by the vertex permutation g = (1, 3, 2, 4)(6, 9, 7, 10)(5, 8).

Subgraphs Γ[6, 9, 7, 10, 1, 5, 2] and Γ[6, 9, 7, 10, 3, 8, 4] are interchanged by
g.
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9
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8
3
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History of theory of graph automorphism groups

Laszlo Babai (1974)

An important contribution:
Found a linear upper bound for µ(G): if G 6= Z3,Z4,Z5 then

µ(G) ≤ 2|G|.

Proved by taking two copies of G and encoding a presentation with a
minimal set of generators in graph structure (a simpler version for cyclic
groups was done earlier, perhaps by G.Sabidussi).

Generalized quaternion groups are examples for which this bound is
sharp. There are a few other series of 2-groups with this bound being
sharp..

For Σ∗, D2∗ smaller graphs are known. For most finite groups G, µ(G)
is unknown.
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Some bounds

For n ≥ 5 An admits a graphical regular representation (a graph on
V = G), see [4]. For these groups µ(G) ≤ |G|. Thus for A5 the best
published estimate until 2018 seemed to be µ(A5) ≤ 60.

We exhibit graphs Γi = (V,Ei), i ∈ {4, 5}, such that |V | = 16 and

Aut(Γi) ' Ai.

Γ4 (also denoted ΞI) improves Babai’s bound for A4. Γ5 (also denoted
ΠI) has fewer vertices than the graphical regular representation of A5.
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Notations

We use standard notations of undirected graphs. A bipartite graph Γ
with vertex partition sets V1 and V2 is denoted as Γ = (V1, V2, E).

Given a polyhedron P , we denote its vertex, edge and face sets as
V = V (P ), E = E(P ) and F = F (P ), respectively. We can think of P
as the triple (V,E, F ).

Rotational group of a polyhedron P = (V,E, F ) — Rot(P ), group of 3D
rotations preserving V and E.
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Projectivization

When we think about finding structures having full automorphism group
isomorphic to A5, we may think about the regular icosahedron.

For regular icosahedron I, Rot(I) ' A5.

The immediate graph to study is the 1-skeleton graph of I - I1 (vertex-
edge incidence graph, in V × E). But Aut(I1) ' A5 × Z2 - too large.

How to mod out Z2? One approach - projectivization. (Other possi-
bilities are reflections — ”projectivizations” with respect to a line or a
plane).

Projectivisation is a function R3\{0} → P (R3), mapping a point to the
line through the origin containing that point.
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Definitions of incidence graphs used

If S is a subset of R3 not containing the origin or a set of vertices/ edges/
faces, then its image under the projectivisation map to P (R3) is denoted
by π(S) or [S].

Definition

Let P = (V,E, F ) be a polyhedron. An undirected bipartite graph
ΓP = (V, F, I) is the vertex-face graph of P if

v ∼ f iff v ∈ V, f ∈ F and v ∈ f.

ΓP corresponds to the vertex-face incidence relation in V × F .
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Definitions of incidence graphs used

Now we projectivize ΓP .

Instead of V, F consider [V ], [F ], as sets. Join vp ∈ [V ] and an element
of fp ∈ [F ] iff an inverse image under projectivization of vp belongs to
an inverse image under projectivization of fp:

π−1(vp) ∩ π−1(fp) 6= ∅.

Definition

Let S = (V,E, F ) be a centrally symmetric polyhedron. Let S be po-
sitioned in R3 so that its center is at (0, 0, 0). We call the undirected
bipartite graph ΠS = ([V ], [F ], Ip) projective vertex-face graph if for
any vp ∈ [V ], fp ∈ [F ] we have vp ∼ fp iff v ∈ f for some v ∈ π−1(vp)
and f ∈ π−1(fp).

Peteris Daugulis 16-vertex graphs 17 / 41
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π−1(vp) ∩ π−1(fp) 6= ∅.

Definition

Let S = (V,E, F ) be a centrally symmetric polyhedron. Let S be po-
sitioned in R3 so that its center is at (0, 0, 0). We call the undirected
bipartite graph ΠS = ([V ], [F ], Ip) projective vertex-face graph if for
any vp ∈ [V ], fp ∈ [F ] we have vp ∼ fp iff v ∈ f for some v ∈ π−1(vp)
and f ∈ π−1(fp).
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Some cardinalities

|[V ]| =
|V |
2

, |[E]| =
|E|
2

, |[F ]| =
|F |
2

.
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Projective vertex-face graph of the icosahedron and A5

Let I = (V,E, F ) be the regular icosahedron. Define Γ5 := ΠI , it is
shown in Fig.1.

Fig.1. - ΠI .

Peteris Daugulis 16-vertex graphs 19 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A5 theorem

Theorem

Let I be the regular icosahedron. Then Aut(ΠI) ' A5.

Proof. We prove that Rot(I) ' Aut(ΠI) in two steps.

First we show that there is a subgroup in Aut(ΠI) isomorphic to Rot(I)
- the group of rotational symmetries of I. That would mean

A5 ' Rot(I) ≤ Aut(ΠI).
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A5 theorem

There is an injective group morphism

f : Rot(I)
f1→ Aut(ΓI)

f2→ Aut(ΠI).

f1 : Rot(I)→ Aut(ΓI) maps every ρ ∈ Rot(I) to f1(ρ) ∈ Aut(ΓI) which
is the permutation of V ∪ F induced by ρ:

f1(ρ)(x) = ρ(x)

for any x ∈ V ∪ F .

Rotations of I preserve the vertex-face incidence relation, f1 is a group
morphism.
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A5 theorem

f2 : Aut(ΓI) → Aut(ΠI) maps every ϕ to ϕP := f2(ϕ) defined by the
rule

ϕP ([x]) = [ϕ(x)]

for any x ∈ V (ΓI). It is the mapping of projective classes induced by
ϕ. Projectivization and composition commute therefore f2 is a group
morphism.

f is injective since there is no nontrivial rotation of I sending each vertex
to another vertex in the same projective class.

Hence f is injective and |Aut(ΠI)| ≥ 60.
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A5 theorem

In the second step we prove that |Aut(ΠI)| ≤ 60 by mapping vertex
neighbourhoods and using a counting argument.

All vertices in [V ] have degree 5, all vertices in [F ] have degree 3. There-
fore [V ] and [F ] are unions of orbits.

It follows that v ∈ [V ] can be mapped by a ΠI -automorphism only to
an element in [V ], in at most 6 possible ways.

Peteris Daugulis 16-vertex graphs 23 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A5 theorem

In the second step we prove that |Aut(ΠI)| ≤ 60 by mapping vertex
neighbourhoods and using a counting argument.

All vertices in [V ] have degree 5, all vertices in [F ] have degree 3. There-
fore [V ] and [F ] are unions of orbits.

It follows that v ∈ [V ] can be mapped by a ΠI -automorphism only to
an element in [V ], in at most 6 possible ways.

Peteris Daugulis 16-vertex graphs 23 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A5 theorem

In the second step we prove that |Aut(ΠI)| ≤ 60 by mapping vertex
neighbourhoods and using a counting argument.

All vertices in [V ] have degree 5, all vertices in [F ] have degree 3. There-
fore [V ] and [F ] are unions of orbits.

It follows that v ∈ [V ] can be mapped by a ΠI -automorphism only to
an element in [V ], in at most 6 possible ways.

Peteris Daugulis 16-vertex graphs 23 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A5 theorem

Every vertex class v ∈ [V ] is contained in its 2-neighbourhood — the
induced subgraph σ(v), shown in Fig.2.

v

Fig.2. - σ(v).
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A5 theorem

After mapping v to v′ we also have to map isomorphically its 2-neigh-
bourhood σ(v) to the 2-neighbourhood of v′ — σ(v′).

The subgraph σ(v) has dihedral group D5 symmetry, it can be au-
tomapped in at most 10 ways:

rotating neighbours of v (in 5 ways),

adding orientation change, ×2.

Peteris Daugulis 16-vertex graphs 25 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A5 theorem

After mapping v to v′ we also have to map isomorphically its 2-neigh-
bourhood σ(v) to the 2-neighbourhood of v′ — σ(v′).

The subgraph σ(v) has dihedral group D5 symmetry, it can be au-
tomapped in at most 10 ways:

rotating neighbours of v (in 5 ways),

adding orientation change, ×2.

Peteris Daugulis 16-vertex graphs 25 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A5 theorem

After mapping v to v′ we also have to map isomorphically its 2-neigh-
bourhood σ(v) to the 2-neighbourhood of v′ — σ(v′).

The subgraph σ(v) has dihedral group D5 symmetry, it can be au-
tomapped in at most 10 ways:

rotating neighbours of v (in 5 ways),

adding orientation change, ×2.

Peteris Daugulis 16-vertex graphs 25 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A5 theorem

2-neighbourhood of any element v, σ(v) contains all 6 elements of [V ].

Thus a permutation of [V ] corresponding to an automorphism can be
done in at most 6 · 10 = 60 ways.

Any permutation of [V ] by an automorphism determines a unique per-
mutation of [F ].
This is proved by considering again 2-neighbourhoods of [V ]. If ϕ1, ϕ2

coincide on V , then ϕ1ϕ
−1
2 fixes all elements of [V ], fixes both com-

mon neighbours (elements of [F ]) of two [V ] elements in distance 2 and,
therefore, all [F ] elements.

Thus |Aut(ΠI)| ≤ 60. We have shown that

Aut(ΠI) = f(Rot(I)) ' A5.
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No other suitable projective incidence graphs

Vertex-face graph and projectivization seems to be the only way that
produces A5 as the automorphism group.

Projective 1-skeleton (vertex-edge) graph has |Aut| = 720.
2-neighbourhood of a vertex has symmetry group Σ5. Thus there are
6 · 120 = 720 automorphisms. Aut increases after projectivization.
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A modification of the projective vertex-face graph of the
icosahedron and A4

Since A5 has subgroups isomorphic to A4, we can try to modify ΠI —
add edges to destroy some symmetry, so that the automorphism group
of the modified graph is isomorphic to A4.

We find generators for a subgroup H ≤ Rot(I), such that H ' A4. It
follows that A4 ' f(H) ≤ Aut(ΠI), where f : Rot(I)→ Aut(ΠI) is the
group morphism defined in the previous proof.

Then we add three extra edges to ΠI which are permuted only by ele-
ments of f(H).
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A modification of the projective vertex-face graph of the
icosahedron and A4

Choose a 6-subset of vertices W = {O,A,B,C,D,E} ⊆ V (I) such that
I1[W ] (graph induced by W in the 1-skeleton graph of I) is isomorphic
to the 5-wheel, see Fig.3.

E D

A C

B

O

Fig.3. - I1[W ].

Note that O,A,B,C,D,E in Fig.3 represent the whole [V ].
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A modification of the projective vertex-face graph of the
icosahedron and A4

Define an undirected bipartite graph

Γ4 = ΞI = ([V ], [F ], Ip ∪ J)

by adding three edges to ΠI : J = {[A] ∼ [C], [B] ∼ [O], [D] ∼ [E]}, see
Fig.4, Fig.5.

[E] [D]

[A] [C]

[B]

[O]

Fig.4. - the extra edges.
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A modification of the projective vertex-face graph of the
icosahedron and A4

Fig.5. - ΞI .
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A modification of the projective vertex-face graph of the
icosahedron and A4

Theorem

Aut(ΞI) ' A4.

Since E(ΞI) ⊃ E(ΠI), it follows that Aut(ΞI) ≤ Aut(ΠI).

Consider the subgroup H = 〈a, b〉 ≤ Rot(I) generated by two rotations:
1 a - a rotation of order 2 around the line passing through the center

of the edge OB and the center of I,
2 b - a rotation of order 3 around the line passing through the center

of the face OCD and the center of I.

We prove that
1 H ' A4 and
2 f(H) = Aut(ΞI) where f : Rot(I)→ Aut(ΠI) is as earlier.
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A modification of the projective vertex-face graph of the
icosahedron and A4

To prove that H ' A4 we investigate subgroups of A5 generated by two
elements of order 2 and 3.

If H ′ = 〈a′, b′〉 ≤ A5, ord(a′) = 2, ord(b′) = 3, then there are 3 possibil-
ities for the isomorphism type of the functional graph (”cycle type”) of
the pair (a′, b′):

1 (a1, b1) ' ((12)(34), (345)), 〈a1, b1〉 ' Σ3, ord(a1b1) = 2,

2 (a2, b2) ' ((12)(34), (134)), 〈a2, b2〉 ' A4, ord(a2b2) = 3,

3 (a3, b3) ' ((12)(34), (135)), 〈a3, b3〉 ' A5, ord(a3b3) = 5.

Now, in our case ord(ab) = 3, thus H = 〈a, b〉 ' 〈a2, b2〉 ' A4.

Peteris Daugulis 16-vertex graphs 33 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A modification of the projective vertex-face graph of the
icosahedron and A4

To prove that H ' A4 we investigate subgroups of A5 generated by two
elements of order 2 and 3.

If H ′ = 〈a′, b′〉 ≤ A5, ord(a′) = 2, ord(b′) = 3, then there are 3 possibil-
ities for the isomorphism type of the functional graph (”cycle type”) of
the pair (a′, b′):

1 (a1, b1) ' ((12)(34), (345)), 〈a1, b1〉 ' Σ3, ord(a1b1) = 2,

2 (a2, b2) ' ((12)(34), (134)), 〈a2, b2〉 ' A4, ord(a2b2) = 3,

3 (a3, b3) ' ((12)(34), (135)), 〈a3, b3〉 ' A5, ord(a3b3) = 5.

Now, in our case ord(ab) = 3, thus H = 〈a, b〉 ' 〈a2, b2〉 ' A4.

Peteris Daugulis 16-vertex graphs 33 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A modification of the projective vertex-face graph of the
icosahedron and A4

To prove that H ' A4 we investigate subgroups of A5 generated by two
elements of order 2 and 3.

If H ′ = 〈a′, b′〉 ≤ A5, ord(a′) = 2, ord(b′) = 3, then there are 3 possibil-
ities for the isomorphism type of the functional graph (”cycle type”) of
the pair (a′, b′):

1 (a1, b1) ' ((12)(34), (345)), 〈a1, b1〉 ' Σ3, ord(a1b1) = 2,

2 (a2, b2) ' ((12)(34), (134)), 〈a2, b2〉 ' A4, ord(a2b2) = 3,

3 (a3, b3) ' ((12)(34), (135)), 〈a3, b3〉 ' A5, ord(a3b3) = 5.

Now, in our case ord(ab) = 3, thus H = 〈a, b〉 ' 〈a2, b2〉 ' A4.

Peteris Daugulis 16-vertex graphs 33 / 41



Abstract
Introduction and preliminaries
Construction and proof for A5
Construction and proof for A4

References

A modification of the projective vertex-face graph of the
icosahedron and A4

Next we prove that Aut(ΞI) = f(H).

First we prove that f(H) ≤ Aut(ΞI).

ΞI differs from ΠI by three extra edges {[A] ∼ [C], [B] ∼ [O], [D] ∼ [E]}.

Elements of f(H) permute ΠI -edges so we only need to check that they
permute the new edges.
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A modification of the projective vertex-face graph of the
icosahedron and A4

The restrictions of f(a) and f(b) to [V ] are, respectively (in cycle nota-
tion),

1 ([O][B])([A][C]), fixes all edges, and

2 ([O][C][D])([A][E][B]), cyclically permutes the three extra edges.

Thus f(H) ≤ Aut(ΞI).
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A modification of the projective vertex-face graph of the
icosahedron and A4

To prove that Aut(ΞI) ≤ f(H) we have to show that elements in

Aut(ΠI)\f(H)

are not ΞI -automorphisms.

To prove that Aut(ΞI) ≤ f(H) we observe that only [F ]-type vertices
have degree 3 in both ΠI and ΞI . Thus any Aut(ΞI)-element as a per-
mutation of [V ] ∪ [F ] belongs to Aut(ΠI) and thus is the f -image of a
Rot(I)-element.

We show that for any rotation r′ ∈ Rot(I)\H, f(r′) does not permute
the three extra edges and thus f(r′) 6∈ Aut(ΞI).
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A modification of the projective vertex-face graph of the
icosahedron and A4

We have that Rot(I) = 〈a, b, c〉 = 〈H, c〉 where c is any rotation of order
5.

Since |Rot(I) : H| = 5 it follows that multiplication by c acts cyclically
on cosets mod H and any element of Rot(I) is in form cnh where
h ∈ 〈a, b〉 = H.
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A modification of the projective vertex-face graph of the
icosahedron and A4

Let c be the rotation around the line passing through the center of I and
O corresponding to the vertex permutation (ABCDE).

f(c) permutes vertex classes: f(c)|V = ([A][B][C][D][E]).

The edge [O] ∼ [B] is the only extra edge having [O] as a vertex, all
edges from [O] are rotationally permuted by f(cn), see Fig.4.

It follows that nontrivial elements f(cn) do not permute the three extra
edges in ΞI .

All is proved.
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Conclusion

Number of vertices of undirected graphs having automorphism groups
A5, A4 can be reduced to 16 by projectivization.

It can be checked by exaustive search that µ(A5) = µ(A4) = 16. It
would be better to find a proof (not done yet).
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