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Abstract

Main MSC 90C27: Combinatorial optimization.

Additional MCS 05C85: Graph algorithms.

This talk proposes a novel data-driven method for territorial division
based on the Voronoi partition of edge-weighted road graphs and the
vertex k-center problem. We show implementations of this approach in
the context of Latvia.
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Introduction

We assume that a country must be partitioned into a set of territorial
units (TU) each containing a center.

For an administrative division to be well defined it must be based on a
small set of quantitative parameters.

We have chosen time as the single unifying human-centered metric.

We consider the time spent traveling to and from the TU center by motor
vehicle to be the only quantitative parameter.
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We view the time citizens spend to comply with their obligations or to
receive crucial state or municipal services as a form of taxation.
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We view the time citizens spend to comply with their obligations or to
receive crucial state or municipal services as a form of taxation.

Consequently, we seek to distribute this time burden as uniformly as
possible among the population.
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Introduction

We view the time citizens spend to comply with their obligations or to
receive crucial state or municipal services as a form of taxation.

Consequently, we seek to distribute this time burden as uniformly as
possible among the population.

This approach intentionally departs from conventional methods encoded
in the current legislature that typically prioritize certain regions, local
interests, population size, security, defense, historical boundaries.
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Introduction and motivation

The main mathematical model — the road graph

We model the country as an undirected edge-weighted road graph, where
vertices (nodes) represent towns/settlements/intersections and edges
represent roads connecting them.
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The main mathematical model — the road graph

We model the country as an undirected edge-weighted road graph, where
vertices (nodes) represent towns/settlements/intersections and edges
represent roads connecting them.

Edge weights are the minimal travel times necessary to travel the road
between the two endpoint vertices, determined by speed limits and typ-
ical traffic conditions.

v
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We model the country as an undirected edge-weighted road graph, where
vertices (nodes) represent towns/settlements/intersections and edges
represent roads connecting them.

Edge weights are the minimal travel times necessary to travel the road
between the two endpoint vertices, determined by speed limits and typ-
ical traffic conditions.

v

This representation captures the connectivity and travel times of the
road network.
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The main mathematical model — the road graph

We model the country as an undirected edge-weighted road graph, where
vertices (nodes) represent towns/settlements/intersections and edges
represent roads connecting them.

V.

Edge weights are the minimal travel times necessary to travel the road
between the two endpoint vertices, determined by speed limits and typ-
ical traffic conditions.

v

This representation captures the connectivity and travel times of the
road network.

We are interested in designing an administrative division of a country in
terms of the road graph - finding centers of TUs and subsets of vertices
forming each TU.




Notations and definitions

Basic definitions from graph theory

We need basic relevant notions about undirected edge-weighted graphs.
Let G = (V, E,w) be an undirected edge-weighted graph:
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Notations and definitions

Basic definitions from graph theory

We need basic relevant notions about undirected edge-weighted graphs.
Let G = (V, E,w) be an undirected edge-weighted graph:

o the weight of a path in undirected edge-weighted graph is the sum
of the weights of all edges in that path — in our case, time to travel
the route between two towns/vertices;

o the distance between two vertices w € V and v € V, d(u,v), is
defined as the weight of a (u,v)-path of minimal weight — in our
case, the minimal time to travel between two towns. d is a metric
in V.
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Basic definitions from graph theory

e eccentricity of v € V, e(v), is defined as

d
g2

— in our case, the time to reach the farthest point from wv;
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e eccentricity of v € V, e(v), is defined as
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— in our case, the time to reach the farthest point from wv;

o radius of G is

r(G) = {)Iél‘I/I e(v),
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Notations and definitions

Basic definitions from graph theory

e eccentricity of v € V, e(v), is defined as

d
g2

— in our case, the time to reach the farthest point from wv;
o radius of G is

r(G) = {)Iél‘I/I e(v),

o center of G is Z(G) := G[Z], where Z := {z € Vle(z) = r(G)} —
vertices with minimal eccentricity (”centered”).
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Notations and definitions

Road graph of Latvia

Our data for demonstrating an implementation of our approach is an
edge-weighted road graph of Latvia I' = (V, E, t).
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Notations and definitions

Road graph of Latvia

Our data for demonstrating an implementation of our approach is an
edge-weighted road graph of Latvia I' = (V, E, t).

Using Google Maps, an undirected edge-weighted graph having 1067
vertices and 1753 edges has been constructed.

The edge-weight function ¢t : £ — RT is the travel time by motor
vehicle in minutes between the end vertices as recorded by Google Maps
in October-November 2023.
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Errors

@ A typical error of vertex coordinates is the geographical radius of
the dot denoting the town in Google Maps. The implied travel time
errors are less than 1 min - the minimal Google Maps time unit.
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@ A typical error of vertex coordinates is the geographical radius of
the dot denoting the town in Google Maps. The implied travel time
errors are less than 1 min - the minimal Google Maps time unit.

@ The real non-stop travel time given by Google Maps between two
vertices having at least 1 intermediate vertex in their shortest path
is less than the sum of travel times for all edges in the shortest path.
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Notations and definitions

Errors

@ A typical error of vertex coordinates is the geographical radius of
the dot denoting the town in Google Maps. The implied travel time
errors are less than 1 min - the minimal Google Maps time unit.

@ The real non-stop travel time given by Google Maps between two
vertices having at least 1 intermediate vertex in their shortest path
is less than the sum of travel times for all edges in the shortest path.

Since we model travel using edge weights we have to implicitly as-
sume that travel includes stopping in all intermediate vertices. This
error increases with the number of intermediate vertices.
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Notations and definitions

Centered partitions of the vertex set

Suppose we are given a road graph - an undirected edge-weighted graph

G=(V,E,w).
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Centered partitions of the vertex set

Suppose we are given a road graph - an undirected edge-weighted graph

G = (V,E,w).

TU is a pair (V’,¢), where V! C V and ¢ € V' is a distinguished element
- the TU center.

o
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Introducti

Centered partitions of the vertex set

Suppose we are given a road graph - an undirected edge-weighted graph

G = (V,E,w).

TU is a pair (V’,¢), where V! C V and ¢ € V' is a distinguished element
- the TU center.

A centered partitions of V:

P={Vi,c1), s (Vm,em)}, c € Vi, | JVi=VVinV; = 2.
=il

™ = =
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Requirements

From centers to TU - Voronoi partition, the first

requirement
Suppose we are given a set of centers S C V. How do we define TUs

with these centers?
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For any ¢ € S, define its TU Vg(c) containing all vertices for which ¢ is
reachable faster than any other center vertex c.
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requirement
Suppose we are given a set of centers S C V. How do we define TUs
with these centers?

For any ¢ € S, define its TU Vg(c) containing all vertices for which ¢ is
reachable faster than any other center vertex c.

For any ¢ € S define the vertex subset Vg(c) as the Voronoi cell of ¢ as
an element of S with respect to the d-metric:

Vs(c) = {v € V|d(v,c) < d(v,d),V ¢ € S, # c}.
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From centers to TU - Voronoi partition, the first

requirement
Suppose we are given a set of centers S C V. How do we define TUs
with these centers?

For any ¢ € S, define its TU Vg(c) containing all vertices for which ¢ is
reachable faster than any other center vertex c.

For any ¢ € S define the vertex subset Vg(c) as the Voronoi cell of ¢ as
an element of S with respect to the d-metric:

Vs(c) = {v € V|d(v,c) < d(v,d),V ¢ € S, # c}.

The centered partition V(S) = {(Vs(c),c)}ces - the centered Voronoi
partition for S.
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Requirements

From centers to TU - Voronoi partitions, the first

requirement

Justification for defining territorial division as the Voronoi partition —
minimization of the graph distance (travel time) to the TU center for
each vertex.
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Requirements

From centers to TU - Voronoi partitions, the first
requirement

Justification for defining territorial division as the Voronoi partition —
minimization of the graph distance (travel time) to the TU center for
each vertex.

Voronoi diagrams (Dirichlet, Thiessen) have been considered for use in
territorial management and planning (WEB, [2025]; Ricca et al., [2008]).

Peteris Daugulis Optimizing Administrative Divisions 13 /30



Requirements

Minimizing center bias within each TU, the second

requirement

To minimize bias within TUs, we impose an additional requirement that
the TU center ¢ must belong to the graph center of its Voronoi subgraph.
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requirement

To minimize bias within TUs, we impose an additional requirement that
the TU center ¢ must belong to the graph center of its Voronoi subgraph.

Equivalently, the eccentricity of each TU center ¢ in the TUs Voronoi
subgraph is equal to the radius of the TU subgraph.
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Requirements

Minimizing center bias within each TU, the second
requirement

To minimize bias within TUs, we impose an additional requirement that
the TU center ¢ must belong to the graph center of its Voronoi subgraph.

Equivalently, the eccentricity of each TU center ¢ in the TUs Voronoi
subgraph is equal to the radius of the TU subgraph.

Justification — to ensure that each center is positioned centrally within
its TU (its Voronoi cell). It reduces bias or unfairness.
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The need for optimization requirements

If the set of TU centers S is chosen then we define TUs uniquely as
Voronoi cells of S.

Peteris Daugulis Optimizing Administrative Divis s 15 /30



Requirements

The need for optimization requirements

If the set of TU centers S is chosen then we define TUs uniquely as
Voronoi cells of S.

The crucial step is to set optimization conditions and find a solution
set Sopt of TU centers. This would trivially imply a partition of V' - its
Voronoi partition V(Sop).
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Main parameter of TU and TU partitions

Radius of the TU (V;, ¢;):

r(Vi,¢i) := maxd(x, ¢;) = e(¢;)

zeV; Gvil

v

Radius of a centered partition P = {(V1,¢1), ..., Vin,em)}, ¢ € Vi

r(P) i= maxr(Vi, ;).
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Main parameter of TU and TU partitions

Radius of the TU (V;, ¢;):

r(Vi,¢i) := maxd(x, ¢;) = e(¢;)

zeV; Gvil

v

Radius of a centered partition P = {(V1,¢1), ..., Vin,em)}, ¢ € Vi

r(P) i= maxr(Vi, ;).

v

We think of radius of a territorial partition as its badness, would like to
minimize it.
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Optimization condition, the third requirement

For a fixed number of TUs (k = |S|) we want to choose the center set S
to minimize the radius of its Voronoi partition r(V(S)):

max r(Vs(c),c) =r(V(S)) is minimal.
ceS,|S|=k
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For a fixed number of TUs (k = |S|) we want to choose the center set S
to minimize the radius of its Voronoi partition r(V(S)):

max r(Vs(c),c) =r(V(S)) is minimal.
ceS,|S|=k

The motivation for this requirement is a drive to minimize the maximal
"time burden” of TUs for a given number of TUs.
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Optimization condition, the third requirement

For a fixed number of TUs (k = |S|) we want to choose the center set S
to minimize the radius of its Voronoi partition r(V(S)):

max r(Vs(c),c) =r(V(S)) is minimal.
ceS,|S|=k

The motivation for this requirement is a drive to minimize the maximal
"time burden” of TUs for a given number of TUs.

This would ensure that the TU radii are close (contribute to ”fairness”).
Minimization of the maximal TU radius automatically makes TU radius
values close to each other.
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Requirements

Summarizing requirements

Requirements for an optimal territorial division:

@ Each TU is Voronoi cell;
@ center of each TU is its graph center;

@ partition radius - maximal TU radius, is minimal.
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Requirements

Summarizing requirements

Requirements for an optimal territorial division:

@ Each TU is Voronoi cell;
@ center of each TU is its graph center;

@ partition radius - maximal TU radius, is minimal.

This is the vertex k-center problem with additional conditions. A special
case of the minimax facility location problem.
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Requirements

Summarizing requirements

Requirements for an optimal territorial division:

@ Each TU is Voronoi cell;
@ center of each TU is its graph center;

@ partition radius - maximal TU radius, is minimal.

This is the vertex k-center problem with additional conditions. A special
case of the minimax facility location problem.

Vertex k-center problem is a NP-hard problem. Number of flops O(n*),
n = |V|, k = |S|. Approximation algorithms should be used.
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Approximation algorithms

Steps of approximation algorithm:

o the greedy step — ”farthest-first” search — start with a random
vertex, choose next vertices maximizing minimal distance to the
previously chosen vertices;
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Approximation algorithms

Steps of approximation algorithm:

o the greedy step — ”farthest-first” search — start with a random
vertex, choose next vertices maximizing minimal distance to the
previously chosen vertices;

o to implement the second requirement - iteratively moving each cen-
ter to the graph center of its Voronoi cell, recomputing Voronoi cells
(these iterations significantly reduce the partition radius; converges
after < 5 iterations, can be proved);
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Approximation algorithms

Steps of approximation algorithm:

o the greedy step — ”farthest-first” search — start with a random
vertex, choose next vertices maximizing minimal distance to the
previously chosen vertices;

o to implement the second requirement - iteratively moving each cen-
ter to the graph center of its Voronoi cell, recomputing Voronoi cells
(these iterations significantly reduce the partition radius; converges
after < 5 iterations, can be proved);

e exhaustive search in graph neighbourhoods of centers (decreases the
radius by only 5 — 10%, but takes a lot of time).
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Approximation algorithms

Steps of approximation algorithm:

o the greedy step — ”farthest-first” search — start with a random
vertex, choose next vertices maximizing minimal distance to the
previously chosen vertices;

o to implement the second requirement - iteratively moving each cen-
ter to the graph center of its Voronoi cell, recomputing Voronoi cells
(these iterations significantly reduce the partition radius; converges
after < 5 iterations, can be proved);

e exhaustive search in graph neighbourhoods of centers (decreases the
radius by only 5 — 10%, but takes a lot of time).

In our case, n ~ 1000 vertices, k < 40 centers, it is realistic to solve (get
convergence, ~ 1 hour) the vertex k-center problem with the additional
requirement.
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The stated goal is to find TUs as sets of vertices. Eventually we have to
draw borders.
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The road graph is not enough to define borders as lines, therefore it is
out of scope.
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Computations

Borders

The stated goal is to find TUs as sets of vertices. Eventually we have to
draw borders.

The road graph is not enough to define borders as lines, therefore it is
out of scope.

Nevertheless, for visualization we offer 2 methods —

e alpha shape method (classic, generalizes convex hull);

e border-edge midpoints method (may be innovative).
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The road graph of Latvia
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Results

Figure: The case k = 1. The black dot is in the geographic position of Z(T).
Red lines are state main roads.
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Results

Conclusion

The proposed optimization approach has been shown to have the poten-
tial to improve the efficiency of the administrative structure in Latvia
by reducing the number of TUs by 58% while preserving the maximal
travel time to the TU center.
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Results

Conclusion

The proposed optimization approach has been shown to have the poten-
tial to improve the efficiency of the administrative structure in Latvia
by reducing the number of TUs by 58% while preserving the maximal
travel time to the TU center.

In future developments, additional edge weights and vertex weights can
be added to the model to capture more road network, territorial and
other features. Other characteristics such as population-weighted dis-
tance and distance weighted by socio-economic indicators, can be used
in future iterations.
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