
Abstract
Introduction and motivation

Directions
References

Proof is number - proposals for a research program

Peteris Daugulis

Daugavpils University, Latvia

September 7-14, 2025, BGU, Beer Sheva, Israel

Peteris Daugulis Proof is number 1 / 42



Abstract
Introduction and motivation

Directions
References

Outline

1 Abstract

2 Introduction and motivation

3 Directions

4 References

Peteris Daugulis Proof is number 2 / 42



Abstract
Introduction and motivation

Directions
References

Abstract

Main MSC 03B35 = General logic, mechanization of proofs and logical
operations.
Additional MCS 00A30 = General, Philosophy of mathematics.

The need to develop a theory for measuring value and complexity of
mathematical implications and proofs is discussed including motivations,
and possible benefits. Examples of mathematical considerations are
given for such a theory. Arguments supporting applications in math-
ematical research guidance are given. No definitions and theorems.
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History

Recall the hypothetical saying attributed to Pythagoras -
”all is number” ∼ all physical objects, systems and processes may be
precisely mathematically modelled. Number is a metaphor, meaning a
mathematical model.
In philosophical terms mathematics — a uniform framework for per-
forming justification/regress steps for knowledge from various areas.

Definition (philosophy)- Justification/regress step

[Justification/regress step — map (explain) information A to simpler,
more fundamental information α.]

Category theory

- an intra-mathematical regress step - mapping various mathematical
theories to graphs with additional structures.
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Pythagorean process

The application areas having mathematical models and being served by
applied mathematics are constantly enlarging and models are getting
more precise and rigorous.

For example, “unmathematical” notions and processes, related to con-
sciousness and cognition may be subject to mathematical modelling (not
just LLM and neural networks)

We call this trend the Pythagorean process.
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Pythagorean process - next steps

One can ask what should be the next steps of the intra-mathematical
Pythagorean process.

We must look at those identifiable mathematical activities which have
not so far been coordinatized and measured.

Proposal

Logical implication =⇒ must be better intra-mathematically justified.
=⇒ should be thought as a mathematical object.
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Pythagorean process - next steps

What do we want:

Modelling and representation of (creative) mathematical implication-
making going beyond its semantic and syntactic content - expressing
mathematical implications, deduction rules and proofs as well de-
fined mathematical objects.

Mathematical expression of value of mathematical statements (the-
orems etc.).

Mathematical structure of mathematical theories.
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Pythagorean process - next steps

We need to develop the idea ”implication/proving is number”.

Given a mathematical theory A (a structure describing objects of study,
first or higher-order logic statements) find a mathematical object τ(A)
which would be a good model of A: elements of A such as logical impli-
cations and proofs in A would be defined as substructures or quotient
structures of τ(A).

The transfer from A to τ(A) philosophically - an intra-mathematical
regress step.
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Pythagorean process - next steps

All implications should form a set with additional structure such as a re-
lation (graph), algebraic system (one or more operations) or topological
space (set of neighbourhoods).

Such a problem for any established mathematical domain seems to be a
hard problem.
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The proposed idea seems to go beyond standard algebraic logic and
proof theory which deals with constructions of systems of axioms, correct
statements, syntactic and language problems, expressive power problems
of axiom and inference systems.

Our idea can be very vaguely compared to introducing Cartesian coord-
inates in the space of statements - assigning implications directions and
lengths.

Complications may be caused by self-reference issues.
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Development of the 24th Hilbert’s problem

This research proposal appears to be related to the lesser-known un-
published 24th Hilbert’s problem - find the simplest proof of a given
statement, compare different proofs, design criterions for simplicity and
rigor etc., see [9].

”Criteria of simplicity, or proof of the greatest simplicity of certain
proofs. Develop a theory of the method of proof in mathematics in
general. Under a given set of conditions here can be but one simplest
proof.”
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Pythagorean process - next steps

It would also be used to guide researchers, show them the most im-
portant research directions, problems and milestones in a rigorous and
quantitative way.

Problems and proofs which are considered important, must have math-
ematically well defined extremal properties.

Progress of mathematics and the goal of mathematics itself (locally and
globally) have to be defined as mathematical objects.
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Computerization

Computers or their future descendants will be eventually used to perform
mathematical research.

Therefore we may need to create theories which would model human
mathematical thinking using mathematical objects which can be pro-
cessed by computers, reduce mathematical goal setting and theorem
proving to computation.

If this approach is successful we may ask fundamental questions.

What can be considered an advanced/computerized form of mathe-
matical or general implication/consequence making? If there is such
a form how it can be implemented?
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Directions and examples of mathematical considerations
- Understanding implications

Proofs of mathematical statements are sequences or, more generally,
networks of logical implications.

Therefore one approach to the study of proofs would be to study rela-
tively simple logical implications and their networks.

Research may be needed to determine

right definitions of irreducible implications,

various complexity levels of implications,

embeddings of the objects corresponding to implications in suitable
ambient structures - e.g. geometrization of logic etc.
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Inclusion of predicate supports

Traditionally, logical implications are defined as instances of a relation
on logical predicates in first-order or higher-order logic using the material
condition (if-then) connective →.

Given two predicates P (x) and Q(x) defined for all x ∈ X we say that
P implies Q (P → Q) if∧

x∈X

(
P (x)→ Q(x)

)
= true.
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Inclusion of predicate supports/characteristic sets

Predicate support

The support (characteristic set) supp(A) of a predicate A may be defined
as the set of A argument values x for which A(x) = true.

Implication as inclusion

Validity of a predicate implication P → Q is equivalent to set-theoretic
inclusion of supp(P ) into supp(Q): P → Q is a true statement if and
only if supp(P ) ⊆ supp(Q).
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Inclusion of predicate supports

We could describe the implication P → Q by set-theoretical, combi-
natorial, algebro-geometrical, geometrical, topological and complexity-
theoretical properties of the predicate support (characteristic) sets supp(P )
and supp(Q).

Such as

absolute and relative sizes and shapes of supp(P ), supp(Q) and
supp(Q)\supp(P ),

properties of the boundaries of supp(P ) and supp(Q).

For instance, we can define that that

the implication P → Q can be considered easy if supp(P ) is a
relatively small, e.g. low-dimensional, subset of supp(Q) (?);

implications P → Q1 and P → Q2 can be considered distinct if
(supp(Q1) ∩ supp(Q2))\supp(P ) is relatively small. (?)
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Abstract
Introduction and motivation

Directions
References

Inclusion of predicate supports

We could describe the implication P → Q by set-theoretical, combi-
natorial, algebro-geometrical, geometrical, topological and complexity-
theoretical properties of the predicate support (characteristic) sets supp(P )
and supp(Q).

Such as

absolute and relative sizes and shapes of supp(P ), supp(Q) and
supp(Q)\supp(P ),

properties of the boundaries of supp(P ) and supp(Q).

For instance, we can define that that

the implication P → Q can be considered easy if supp(P ) is a
relatively small, e.g. low-dimensional, subset of supp(Q) (?);

implications P → Q1 and P → Q2 can be considered distinct if
(supp(Q1) ∩ supp(Q2))\supp(P ) is relatively small. (?)

Peteris Daugulis Proof is number 17 / 42



Abstract
Introduction and motivation

Directions
References

Inclusion of predicate supports

We could describe the implication P → Q by set-theoretical, combi-
natorial, algebro-geometrical, geometrical, topological and complexity-
theoretical properties of the predicate support (characteristic) sets supp(P )
and supp(Q).

Such as

absolute and relative sizes and shapes of supp(P ), supp(Q) and
supp(Q)\supp(P ),

properties of the boundaries of supp(P ) and supp(Q).

For instance, we can define that that

the implication P → Q can be considered easy if supp(P ) is a
relatively small, e.g. low-dimensional, subset of supp(Q) (?);

implications P → Q1 and P → Q2 can be considered distinct if
(supp(Q1) ∩ supp(Q2))\supp(P ) is relatively small. (?)

Peteris Daugulis Proof is number 17 / 42



Abstract
Introduction and motivation

Directions
References

Inclusion of predicate supports

Proofs as sequences of implications P1 → P2 → ... → Pn may be con-
sidered as sequences of set-theoretic inclusions supp(P1) ⊆ supp(P2) ⊆
... ⊆ supp(Pn).

Passing from semantic-specific implication making to constructing se-
quences of embedded sets should be considered as a computational sub-
stitution of implication making.

Coordinatization and measurement of logical implications may be re-
lated or even reduced to computational complexity if computations are
involved determining the inclusion supp(P ) ⊆ supp(Q).
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Running example — Propositional logic — Irreducible
implications

We give a candidate definition for irreducible implications in the case of
propositional logic (predicates depending on binary vectors).

Suppose p(X1, ..., Xn) and q(X1, ..., Xn) - formulas in propositional Boolean
variables X1, ..., Xn and the implication p→ q is true.

We call an implication p → q irreducible if the full disjunctive normal
form (DNF) of q has exactly one more disjunctive term than the full
DNF of p. Such an implication p → q is not a composition of two
noninvertible implications.
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Running example — Popositional logic — Complexity
of implications

Complexity of formulas in propositional Boolean variables can be mea-
sured in terms of their minimal disjunctive or conjunctive forms, struc-
ture of prime implicants, Blake canonical forms, logical depth and other
circuit complexity measures, see [4].

Complexity of an implication p(X1, ..., Xn)→ q(X1, ..., Xn) can be mea-
sured in terms of changes of normal forms (disjunctive, conjunctive, min-
imal, Blake etc.) of p and q.
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Complexity of an implication p(X1, ..., Xn)→ q(X1, ..., Xn) can be mea-
sured in terms of changes of normal forms (disjunctive, conjunctive, min-
imal, Blake etc.) of p and q.
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Graph (binary relation) theory

Graphs (binary relations) are used in mathematical logic, see [8] for a
recent work. Propositional fomulas have been modeled as graphs —
cographs.

Recently there has been an attempt to encode mathematical logic ”with-
out syntax” - to define and study combinatorial proofs in proposi-
tional logic as graph homomorphisms of certain kind, see [7].
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Graph theory - Process graphs

AoA (Activity-on-Arc) proof graphs

AoA type proof graph Π = (Σ,Λ) - elements of Σ are statements (which
are not interpreted as implications) and directed edges in the set Λ are
logical implications.

Assume that any edge of a proof graph Π is given a weight which mea-
sures the complexity or some other well defined property of the corre-
sponding implication.

Assume that we are given a directed path between two vertices P and Q
having edges e1, e2, ..., en with weights w1, w2, ..., wn which corresponds
to a proof P → Q. Complexity or other measure of the proof could be
defined as an appropriate function of weights w1, w2, ..., wn, for example,∑
i
wi.
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Running example — Propositional logic

In the case of propositional logic, an example of edge weight correspond-
ing to an implication p→ q could be the number of set-theoretic opera-
tions necessary to produce supp(q) starting with supp(p).
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Graph theory — Neighbourhoods

We could investigate problems such as, for example, the problem of find-
ing all statements in a neighbourhood of the premise/axioms — within
a fixed distance from a given statement or axiom.
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Graph theory - Vertices with special/extremal
properties as valuable statements

In general, proof modeling and, in particular, proof graph models should
enable us to rigorously identify extremal statements and extremal im-
plication steps which are relatively more or less important than others.

In particular, vertices of proof graphs having extremal properties related
to connectivity, metric, centrality or other invariants may be considered
as valuable ”theorems”.

The same arguments should identify statements (peripheral, low degree
etc.) which can be considered of low value.

In our running example — low value statements would correspond to
subsets in Fn

2 that can be obtained using a small number of set-theoretic
operations.
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Graph theory - Path systems

Different paths in a proof graph between vertices P and Q represent
different proofs between the corresponding statements.

Having fixed vertices P and Q we can study all (P,Q)-paths, e.g. we
can pose the problem of finding all (P,Q)-proofs in a right sense.

We can also try to find vertices with special properties, e.g. vertices
which are in more than one (P,Q)-path.

In topological models for proof spaces topological ideas such as homotopy
classes of path systems should be considered.
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Graph theory - Shortest paths

Given two statements P and Q in a proof graph we could look for (P,Q)-
paths with some special or extremal properties such as the paths having
minimal weight.

That would correspond to finding (P,Q)-proofs with some special prop-
erties, for example, proofs of minimal complexity. These ideas again
remind us of the 24th Hilbert’s problem and the “simplest proof”.
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An algebraic approach: Composition of implications as
an algebraic operation

We note that algebraic approaches to mathematical logic are currently
being pursued, see for example [6].

The composition of implications can be interpreted as a binary associa-
tive operation on the set of implications.

The implication set Λ thus has a monoid structure (Λ, ◦), algebraic ques-
tions may be asked and algebraic methods may be used to study Λ —
subalgebras, quotient algebras, minimal generating sets etc.
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An algebraic approach: Morphisms of coordinate rings
induced by support inclusion

Another algebraic approach is to study ring homomorphisms of coordi-
nate rings of algebraic varieties.

Inclusion of predicate support sets may be interpreted (if possible) as
morphisms of algebraic varieties.

By duality known in algebraic geometry such inclusions as regular map-
pings induce morphisms of their coordinate rings going in the opposite
direction.
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A topological approach

A mathematical theory (Σ,Λ) can also be endowed a topological space
structure as follows.

Note that the implication binary relation → is a preorder relation - it is
obviously reflexive and transitive.

We can view the implication relation as a specialization preorder for the
Alexandrov topology τ on Σ corresponding to ←: the open sets for τ
are the upper sets with respect to the relation ←, see [3].

Thus we can investigate the given mathematical theory (Σ,Λ) using
topological experience and intuition - study the topology τ with re-
spect to standard problems of general and algebraic topology such as
interpretations of continuity, separability, metrizability, homotopy or
(co)homology invariants.
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Proof bundles

If we have two predicates P (x), Q(x) where x ∈ X and an implication
or proof f : P → Q which is true for every x ∈ X then complexity of
proofs and proofs themselves may be different for different x ∈ X.

Such situations may be considered using topological analogy with topo-
logical bundles, the set X being the base and the proof fx for each x ∈ X
being the fiber.

This may generalize the standard ”proof-by-case” method.
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Complexity-theoretic approaches

Given an implication or a proof f : P → Q we can measure the (de-
terministic) complexity of f as some computational complexity measure
(time or space related) of a computational process producing f with
given P .

An example of such measure can be proof size considered in proof com-
plexity branch of proof theory.
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Complexity-theoretic approaches

Value of mathematical results can be estimated considering their impact
on computation complexities (time, space, parallelability etc.).

A result can be considered valuable if it allows to reduce complexity
classes of computational and decision problems.
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Induction analysis of mathematical results and theories

Mathematical results and theories should be analyzed with respect to
existence of Noetherian induction proofs.

Suppose the statement ∀ x ∈ X P (x) is true. Does there exist a well-
founded relation R ⊆ X × X (well-founded = no infinite descending
chains) such that the statement can be proved using Noetherian (struc-
tural) induction on R ?

Complexity of involved well-founded sets and induction steps can be
considered as complexity and value measures.
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Applications — Mathematical politics — Research
guidance

There is no rigorous method to determine the value and the substan-
tiality of a research direction, a problem and a mathematical result as a
mathematical object. Number of citations, Hirsch index is not a quan-
titative (intra-mathematically justified) indicator.

An advance of the Pythagorean process is needed.

Mathematical research processes, problems, conjectures and research in-
terests should be motivated by rigorous analysis based on a proof and
statement coordinatization theory.

The progress of mathematics must be defined and monitored mathemat-
ically.
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Applications — Mathematical politics — Control of the
publishing process

Apart from guiding mathematical research new advances in proof coor-
dinatization and complexity theory could impact evaluation and disse-
mination of mathematical results/texts.

The current competition and trend based evaluation of results can not
be considered justified in mathematics which is the very source of the
culture of unbiased logical reasoning and numerical analysis.
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Applications — Mathematical politics — Evaluation of
mathematical texts

A rigorous proof complexity and value theory would allow to define and
determine values of correct results more rigorously and set standards for
them.

Research result evaluation would be reduced to computation.

The author suggests to replace the existing publication system (journals)
by a single (or several competing) international database which would
openly, in a certified way, evaluate, classify and assign well defined values
to sufficiently motivated and complex results.
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Some concrete proposals

We can formulate a few specific initial research proposals:

analyze the body of facts of some classical domain (for example,
Euclidean geometry) with respect to the implication modelling and
Hilbertian simplicity idea, create a database of all nonequivalent
logical steps or deduction rules,

analyze the body of facts of some classical domain with respect to
structural induction, create a database of all nonequivalent induc-
tion arguments,

classify invariants and object properties in a mathematical domain
such as, for example, graph theory, with respect to computational
complexity (e.g. polynomial or NP-complete) of decision problems,
study the network of polynomial reductions,

introduce measures of cognitive complexity of mathematical activi-
ties in school mathematics courses.
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Conclusion

We have given a number of arguments which describe a research proposal
in mathematical logic.

It can be defined as faithful mathematical representation of implications
and proofs.

The main argument is a desire to formalize, map to simpler mathematical
objects and measure logical implications, to make nontrivial and creative
mathematical theorem proving a computation.

Another argument is a possibility to rigorously measure mathematical
results and to guide the mathematical research in a rigorous and optimal
way.
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