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1. Preamble

Formal main goal:

To present an infinite series of PROPER LOOPS
which like groups have a "high symmetry“.

Additional goal:

Using this opportunity to consider with renewed
rigour various links of Latin squares with other
combinatorial, geometrical and algebraic struc-
tures.



Various points of view:

e Latin square as an array
e Latin square as Cayley table of a quasigroup
e Latin square as 3 X n orthogonal array

e Latin square as ternary relation, that is a col-
lection of triples

® 3-net

e Transversal design

e Amorphic association scheme
e Strongly regular graph

and so on



A methodological principle

Assume we investigate a structure v with rich
symmetry.
Then:

e Describe G = Aut(7)
e Get a "natural “ action for ¢

e Induce from this natural action of GG all other
actions related to ~y

e Get in these new terms a nice interpretation
of ~y



Example 1:

Block design D = (V, B) with the parameters
v=6b=10k=3.7r=5\=2
(the smallest non-trivial BIBD).

It turns out that Aut(D) = Aj is a group of
order 60.

Consider the auxiliary structure pentagon C:

0

Aut(C5) = D5, ‘D5| = 10

Ds =< (0,1,2,3,4), (1,4)(2,3) >

The group Dj5 consists of even permutations only:.



The orbit 0545 has length % = 6.

Here 1t 1s:
0 0 0
T W
3 2 3 2 3 2
P P P
0 0 0
4@1 4. [\ ! 4%?@1
3 2 3 2 3 2
P P P

P:{P07P17P27P37P47P5}
B = {by,b1,...,bg} - edge set of K5 with
= 40,1}, b = {0,2}, by = {0,3}, b3 ={0,4},

— (1,2}, by = {1,3), bs = {1,4), by = {2,3},
— (2,4}, by = {3,4).
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Incidence: edge is included in a pentagon

Final list of D:

bo = { Py, P1, P5}
by = { P, Py, Ps}
by = { P», P3, Py}
bs = { P, P, Ps}
by = { P, P, P}
bs = { P, P, Ps}
be = {5, Py, Ps}
br = { P, Ps, Ps}
bs = { P, P, P}
by = { Py, P1, Ps}

All properties are quite visible from this inter-
pretation!

We will come back to this example.



2. Main definitions

Latin square: (naive way)

An n xn array L with n different entries, n > 2,
such that each entry occurs exactly once in any
row and any column.

As a rule we set
R=C=S=[l,n]={rx e N|l <y <n}
(R, C, S means Rows, Columns, Symbols)

Reduced Latin square L:

in the first row and the first column the elements
1,2,...,n occur in the natural order.



A quasigroup (@), -) is a set () with a binary oper-
ation - “ such that for all a,b € @) the equations

a-r=bandy-a=2>0

have a unique solution in ().

Latin square = Cayley table of a quasigroup

A loop is a quasigroup with an identity element
e € L. Usually e is identified with 1.

Then:
Loop = reduced Latin square

A group is an associative loop.
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Latin square as a ternary relation L C [1,n]?,
such that |L| = n® and the sets

L1,2 — {(27])|<7’7.77 k) S L}7
L1,3 — {(7’7 k)‘@?]a k) S L}a
L2,3 — {(]7 k>|(7’7]7 k) S L}a

have n? distinct elements.

Particular case of a group H

{(i,4,k)li,j, k € H,ijk =1},

where 1 is the identity element of H.
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An orthogonal array OA(n,3) of order n and

depth 3 is a 3 x n? array with entries from [1, n],
such that for any two rows of the array the n?
vertical pairs occuring in this array are different.

Remark:
Ternary relation is a set

Orthogonal array is a ”vertical ordered® repre-
sentation of the set
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A 3-net of order n is an incidence structure
v = (P, L), which consists of an n*-element set
P of points and a 3n-element set L of lines.

There is a partition £L1ULyULs = L into disjoint
families of parallel lines (directions).

Axioms:

1) every point is incident with exactly one line
of each family £;,7 =1, 2, 3.

(2) two lines in different families intersect in ex-
actly one point

(3) two different lines in the same family do not
mntersect

(4) there exist three lines in three distinct fam-
ilies which are not incident with the same
point
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Latin square L — 3-net y(L):

Points are cells of L

Directions correspond to horizontal lines, vertical
lines, and the lines occupied by the same element

A 3-net is a uniform and regular incidence struc-
ture with

v=n*b=3nk=n,r=23.

This is a particular case of a partial geometry.

We can get (many) Latin squares from a given
3-net.
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Consider the dual structure v/ = (£, P) which
has L as points, P as lines and the transposed
incidence relation.

The three families of points are called groups
(unfortunate term), each of cardinality n, and
there are n? blocks (lines):

v=3n,b=nk=23r=n.

The obtained structure is called a transversal
design T'D(3,n).
(which is by our definition a resolvable design)
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One more axiomatization in terms of association
schemes:

M = M(L) — (Q, {Ro, Rl, RQ, Rg, R4}), where
Q] = n? and a family {R;|0 < i <} is a parti-
tion of 2, which satisfies certain axioms.

A strongly regular graph I' = LSG(L) with pa-
rameters

v=n"k=3n—-1),\=n,u=6.

The vertices are the cells of L.

Adjacency: two cells are in the same row, in the
same column or are occupied by the same sym-

bol.
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Example 2:

123
231
312
L3
3-net N(Zg)
G O O O O O
O O
® e ® O O O

11 12 13 11 12 13

ard




Classification

- reduced squares
- isotopy classes
- types

- uasigroups

- loops

- main classes

Two Latin squares L; and Ly are in the same
main class if and only if the corresponding 3-nets

are isomorphic, i.e. N'(L1) = N (Ls).
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Classics and Folklore

Lemma 1:

Let L be a Latin square and I' = LSG(L). If
n > 5 then the cliques of I' necessarily corre-
spond to the lines of an associated 3-net N (L).

Lemma 2:
For n > 5 we can reconstruct the 3-net N(L)
uniquely from the graph I' = LSG(L).

Lemma 3:
For n > 5 we have

Aut(LSG(L)) = Aut(N(L)) = (L),

The group (L) is sometimes called the colline-
tation group of L.
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Lemma 4:
Take a Latin square L as a Cayley table of a
group H. Then

Aut(N(L)) = (H? : Aut(H)).Ss

Theorem 5:
Let L be a group Latin square corresponding to
a group H. Assume |H| > 5. Then

Aut(LSG(L)) = (H? : Aut(H)).S

Corollary 6:
Let H be a group of order n, I' = LSG(H).

Then

a) Aut(I') is a transitive permutation group of

2
degree n”,

b) Aut(I') contains a regular sungroup H? of

order (and degree) n?.
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Proposition 7:

Let H be a group of order n and let () be a loop
of order n. Then H = () (isomorphic as loops) if
and only if the corresponding 3-nets N'(H) and
N (Q) are isomorphic.

Corollary 8:

a) If H; and H, are nonisomorphic groups of
order n, then LSG(H;) % LSG(H,).

b) If a Latin square L does not appear in a main
class of any group, then LSG(L) is not iso-
morphic to any Latin square graph over a

group.
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4. More examples

Example 3: The case n = 2

There are two Latin squares:

12 21

21 12
They can be regarded as cocliques in the 3-dimensional
cube Q3 = H(3,2).

221 222 221 222
211, % T 21lg—7 . — 9
212 212
121 1 121 17
— N S

111 112 111 112

(Similar situation with Hamming graph H (3, n)
for arbitrary n.)
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Example 4: The case n =4

a) T1 = LSG(Ey) = Lo(4)

O O O O

O O O O
Ly(4)
Aut(Ly(4)) = 5308, (wreath product) is a group
of order 2 - (4!)? = 1152.

According to Lemma 4, Aut(N(FEy)) is a group
of order 42 - 3!-3! = 576. It is a proper subgroup
of the above group.

There are two ways to reconstruct a net from a
graph (the assumption n > 5 is important!).
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b) 'y = LSG(Zy) = Sh
Sh is the famous Shrikhande graph.

Aut(N(Zy)) = 42 -2 - 31 = 192

02 13 20 31 02

The stabilizer of a vertex is Dg of order 12.
Thus, Aut(Sh) is a group of order 16-12 = 192.
Here Theorem 5 is also valid.

The graphs I'y,I'y describe the only two main
classes for n = 4.
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Example 5: The case n =5

Still there are two main classes

['y = LSG(Zs) is isomorphic to the Paley graph
over the field Fys,

[y = LSG(Q) for a certain proper loop @ of
order 5.

This is the smallest case when we have a proper
loop, and when Awut(I") is an intransitive permu-
tation group.

Aut(I'y) is a group of order 5% - 4 - 3! = 600.

Aut(Dy) =2 (Sy+ S5)P% is of order 5 -4!- 3! = 72.
(A nice model is available.)
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Example 6: The case n =6

There are 12 main classes. Three of them have a
transitive automorphism group:

AutLSG(Zg) is a group of order 6%-2-3! = 432,
Aut LSG(Ss) is a group of order 62-3!-3! = 1296,

AutLSG(Qg) has order 648 (second part of the
talk).

All other groups are intransitive.
A nice model for a main class with the group

S5 x Sy of order 240 (in terms of Example 1) is
available.

26



9 < U I0] eje(]

00CTSBETS TESOETT 8076 | 60T GG L1 Gl 9

08CI9T R84 94 9 G G G g

9.4 Ge 4 G G G G 4

Gl g ! ! ! ! ! e

G ! ! ! ! ! ! G

! ! ! ! ! ! ! !

soxenbs jo | sdnoisisenb | sorenbs | sdooy | sosse[o | sodAy | sosse | u
junowe [ej0} poonpal Adojost ureut

27



5. The remark of Barlotti and Stram-
bach

We can now express our interest in ”group-like
quasigroups in a more concrete manner as it
was done by

A. Barlotti & K. Strambach
(Adv. in Math. 49 (1983), 1-105).

They wrote on page 79 of their survey paper:

We were not able to decide whether there
exists a proper finite loop having a sharply
transitive group of collineations.

(compare Corollary 6 b)

As far as we know such an example did not ap-
pear in evident form in the literature.
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The answer is surprisingly simple.

Proposition 9: (HK)

Consider the following Latin square Qg:
(No. 3.1.1 in Dénes & Keedwell, 1974)

S O = W N
Ot O O = W N
= = Ot DD — W
—= W DN O O
W N~ B Oy Ot
O — W Ot DN O

Then:
(a) The main class of Q)¢ does not contain a group;

(b) G = Aut(I'(Qg)) is a transitive permutation
group of degree 36 and order 648;

(c) G has a regular subgroup.

Original proof: brute force computations with

the aid of GAP, GRAPE and nauty.
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6. Computer aided answer

... was obtained as a byproduct of a general prob-
lem considered by Aiso Heinze in his Ph.D Thesis
(2001):

The complete classification of all partial differ-
ence sets over "small “groups (of order < 49).

Recall that a partial difference set means a con-
nection set of a strongly regular Cayley graph.

(Catalogues of Ted Spence were used for the gen-

eral case, however, they are not requested in or-
der to get this particular result.)
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The use of GAP allowes us to obtain a set of
generators of our group G of order 648 as well as
a description of two (up to isomorphism) regular
subgroups H; and Hs of order 36.

[t turns out that Hy = S3 x S3.
Now we guess what the structure of G is :

[s it true that G = (550 .53)P* (i.e., a subgroup
of even permutations in the wreath product of
53 with 53)?

— Yes, answers GAP.

Is it true that G, = Dy (here Dy is the dihedral
group of degree 9 and order 18)7?

— Yes, answers GAP.
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Now we are prepared to use another computer

package COCO (I. A. Faradzev, K., Moscow,
1990 1992)

Input:

a) a set of generators for G:
=(0,1,2,3,4,5,6,7,8),
— (0,3,6),

~ (0,3)(1,4),

= (0,1)(3,4,6,7).

b) the 9-gon (Y, such that Aut(Cy) is Dy and
Aut(Cg) S G.
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Why this set of generators for G7

0
8 1
7 2
6 3
5 4 s

0
O
60 O3
2é7 N 1
O O
AN
g0 Os5 70 0Og4

(0,1,2,3,4,5,6,7.8),
(0,3.,6),

(0,3)(1,4),
(0,1)(3,4,6,7).
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Output:

e transitive action of G on all different copies
of Dg with respect to permutations from G;
this is an action of degree 32 648 = 36;

e 2-orbits of this action (Subdegrees are 1,1,1,6,9,9,9);

e intersection numbers of a corresponding association
scheme with 6 classes;

e all mergings of classes of this association scheme.

In particular, we get three isomorphic copies of
the graph
['=LSG(Qs)

which is a strongly regular graph with the pa-
rameters

v=236,k=15\=6,u=6.
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The first step to a computer free interpretation
is an explanation of some of the results obtained

by COCO.
Consider the auxiliary graph A = 3 o K.

0
O
6 © 03
% N\

2 1

O O
N—

g0 05 70 04

& means 9 edges of K33

A has 3-3-2-2-2 = 72 spanning subgraphs
which are Hamiltonian cycles in A.
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(G has two orbits of length 36 in its action on
these 72 cycles (G is a "half* of Aut(A), while
all permutations in Dy are even).

Solve a problem of a famous donkey:

Select one of these two orbits (take the one which
includes our canonical Cy).

Get representatives of the neighbours for 6 classes:

0 0 0
7 5 2 1 2 1
8 4 4 5 4 8
3 6 3 6 3 6
1 2 8 7 5 7
6 9 9
0

0 0
8 4 7 2
7 2 5 4 1 8
3 6 3 6 6 3
5 1 1 8

36

N
N



Now we have three possibilities to merge a re-
lation of valency 6 with a relation of valency 9.
Each time we get a desire strongly regular graph
of valency 15.

The proof of the fact that we indeed are getting
a desired SRG, in principle, can be managed by
hand computations.

However, in principle, there is no essential differ-
ence with the strict use of a computer.

An honest interpretation is needed!

37



7. Computer free interpretation

General idea:

e start with a Latin square,

e get a corresponding 3-net with 36 points and
18 lines,

e this is a partial geometry;,

e a dual structure is also a partial geometry;,
namely a transversal design T'D(3,6) such
that

— there are 18 points,

— the points are partitioned into 3 classes,
each of size 6,

— there are 36 blocks, each of size 3 (groups
of the TD),

— every unordered pair of elements from the
point set is either contained in exactly one

group or in exactly one block, but not
both.
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Let us consider once more the graph A.

Here is one ”partial one-factor F'*“ in A.

Clearly, we have 3 - 3! = 18 one-factors.

e These are points of T'D(3,6),
e Blocks are 36 selected cycles in A,

e Incidence is provided by the usual inclusion.

Most of the axioms of T'D(3,6) are evidently
satisfied.
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In particular, each of the three groups consist of
6 one-factors, e.g., between {0, 3,6} and {1,4, 7}
(or the two other options).

It remains to check that two one-factors in dis-
tinct groups appear in exactly one cycle from a
selected orbit of size 36.

0
6 3
2 / 1
O
8 5 70 ©4
0
‘ 3
2 1
C//
' 0,4,5,3,7,8,6,1,2 ¢g:C"—C"
1,2

c".0,7,8,6,4,5,3,1, g=1(4,7)(5,8)(3,6)
g is odd
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It is clear from the construction that
Aut(T'D(3,6)) > G.

Some brute force inspection (using the base of a
group) allows to show that we have equality.

Thus, Aut(T'D(3,6)) = Aut(LSG(Q)) is a group
of order 648.

Recall that

|Aut(LSG(Zg))| = 6% -2 -6 = 432
| Aut(LSG(S3))| = 6% -6 - 6 = 1296.

Therefore, we claim that our Latin square ()
(which is now hidden) is not coming from a group
(i.e., does not belong to a main class of a group).
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[t remains to show that GG has a regular subgroup

in its action on 36 blocks of T'D(3,6).

Let us switch to the original action of G on 9
points.

g0 Os 70 O4
Consider Hy x Hy with

H, =< (0,3,6),(0,3)(2,5) >,

Hy =< (1,4,7),(1,4)(2,5) > .

It 1s clear that:

a) |H| =36 H acts
b) H<G —> regularly
¢) no Cy which is on 36 points

preserved by H
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Exceptional quasigroup Qg revisited

We start from v =TD(3,6).
- Assign labels to what will be R, C, S.
- Read the Latin square!

There is a lot of freedom.
We use special labels (elements of Sj).

Main 1dea:

1. one-factors <+ elements of Sj,

2. two one-factors define uniquely a Hamilto-
nian cycle,

3. an obtained Hamiltonian cycle ”automatically *
defines a third one-factor as a product of the
first and the second one,

4. we get a loop.
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Here is the result:

e |(ab,c)|(a,ch)| (ab) | (be) | (ac)
¢ e |(ab,c)|(ach)| (ab) | (be) | (ac)
(a,b,c) | (a,b,c) | (a,c,b)| e (b,e) | (ac) | (a,b)
(a,c,b) | (a,c,b)| e [(abe)| (ac) | (ab) | (byc)
(a,b) | (a,b) | (a,c) | (be) |(ab,c)] e |(ac,b)
(b,e) | (bye) | (a,b) | (ac) |(a,chb)|(abe)| e
(a,c) | (a,c) | (bec) | (ab) e |(a.cb)(ab,c)
Reinterpretation:

Let s := (a,b,c). Then

xoy{

LY,
LY,

44

rys, if sign(z) = sign(y)

if sign(z) = sign(y) = 1,
if sign(z) - sign(y) = —1,

—1.




9. Infinite series

Our Latin square Qg and its group (implicitely)
are known for a very long time (see references).

In fact, we can give a nice direct explanation of
(¢ as "twisted “ dihedral group D3 = S5 of order
6.

Starting from this explanation we can describe
an infinite series of examples providing a positive
answer on the question of Barlotti and Stram-

bach.

These examples are based on a similar twisted
dihedral group D, of order 2p, where p is a prime
and p = 3 (mod 4).
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The group Aut(LSG(Q)) for this case appears
to be (S50.D,)P* of order £ - 3! - (2p)® = 24p°.

We use similar arguments to prove that we still
have a positive answer on the question by Barlotti-
Strambach.

The case p = 7 plays a similar friendly role. We
implicitely detect the existence of a quasigroup

which will be denoted by Q2p.
We can write it explicitely.

Consider (Dy,,-), C, < D,, C, =< a > and
define (@2, o) as follows:

0w — 4 TV if x and y are odd,
Y= zry, otherwise
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Moreover, in a similar way a twisted quasigroup
(D2, may be defined for p =1 (mod 4).

We have the desired examples for the cases p = 5
and p = 13.

The proot should be slightly modified.
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10. Discussion
What 1s discovered:

(Example of Qg is well-known; infinite series of
loops was also subject of various investigations
in loop theory.)

New:
e Properties of loops

e [.inks between various combinatorial
structures

e approach for the investigation of ”highly
symmetrical “ loops.

There are also attractive new perspectives for
further investigations.
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